HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2018
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 2 - TEST 2
 1 hour 20 minutes

This examination paper consists of 3 pages.
This paper consists of 6 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write in ink.
2. Write your name clearly on each sheet of paper used.
3. Answer ALL questions.
4. Do NOT do questions beside one another.
5. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. (a) The sum of an infinite geometric sequence is 18 and the sum of the first three terms is $12 \frac{2}{3}$. Find the first term.
(b) An arithmetic series, with first term 8 and common difference d, consists of 23 terms. Given that the sum of the last 3 terms is 5 times the sum of the first 3 terms.

Find:
(i) the value of d.
(ii) the sum of the first 15 terms.
2. The sequence $u_{1}, u_{2}, u_{3} \ldots$ is defined by $u_{1}=2$ and $u_{n+1}=2 u_{n}-1$.
(i) Find u_{2} and u_{3} and verify that $\frac{1}{2}\left(u_{4}-1\right)=4$
(ii) Hence suggest an expression in terms of n for u_{n}.
(iii) Use induction to prove that your answer to part (ii) is correct.
3. (i) Show that $\frac{1}{r}-\frac{1}{r+2}=\frac{2}{r(r+2)}$.
(ii) Hence, find an expression, in terms of n, for

$$
\sum_{r=1}^{n} \frac{2}{r(r+2)}
$$

(iii) Determine
(a)
[1]

$$
\sum_{r=1}^{\infty} \frac{2}{r(r+2)}
$$

(b)

$$
\sum_{r=n+1}^{\infty} \frac{2}{r(r+2)}
$$

Total 10 marks

4. The function f is defined by $f(x)=\ln \left(1+e^{x}\right)$
(a) Use Maclaurin's theorem to show that when $f(x)$ is expanded in ascending powers of x :
(i) the first three terms are $\ln 2+\frac{1}{2} x+\frac{1}{8} x^{2}$.
(ii) the coefficient of x^{3} is zero.
(b) Hence write down the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \left(\frac{1+e^{x}}{2}\right)$.
5. (a) The coefficient of x^{2} in the expansion of $\left(x+\frac{1}{a x}\right)^{8}$ is 7 .

Find the possible value of a.
(b) (i) Find the binomial expansion of $(1+6 x)^{\frac{2}{3}}$ up to and including the term in x^{2}.
(ii) Find the binomial expansion of $(8+6 x)^{\frac{2}{3}}$ up to and including the term in x^{2}. [3]
(iii) Use your answer from (b) (ii) to find an estimate for $\sqrt[3]{100}$ in the form $\frac{a}{b}$ where a and b are integers.
6. The equation

$$
24 x^{3}+36 x^{2}+18 x-5=0
$$

has one real root α.
(a) Show that α lies in the interval $0.1<x<0.2$.
(b) Starting from the interval $0.1<x<0.2$, use interval bisection twice to obtain and interval of width 0.025 within which α must lie.
(c) Taking $x_{1}=0.2$ as a first approximation of α, use the Newton-Raphson method to find a second approximation x_{2} of α. Give your answer to 4 decimal places.

