HARRISON COLLEGE INTERNAL EXAMINATION 2015
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 2
 1 hour 20 minutes

This examination paper consists of 2 pages.
This paper consists of 6 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Do NOT do questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. (i) Prove that

$$
\begin{equation*}
\frac{1}{\sin 2 \theta}-\frac{\cos 2 \theta}{\sin 2 \theta} \equiv \tan \theta \tag{4}
\end{equation*}
$$

(ii) Hence show that $\tan 15^{\circ}=2-\sqrt{3}$

Total: 7 marks
2. (i) Express $3 \sin \theta+4 \cos \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence
(a) Solve the equation $3 \sin \theta+4 \cos \theta+1=0$, giving all solutions for which
$-180^{\circ}<\theta<180^{\circ}$
(b) Find the values of the positive constants k and c such that

$$
\begin{equation*}
-37 \leq k(3 \sin \theta+4 \cos \theta)+c \leq 43 \tag{5}
\end{equation*}
$$

for all values of θ.
Total: 12 marks
3. The circle C has equation $x^{2}+y^{2}-8 x-16 y+72=0$.
(a) Find the coordinates of the centre and the radius of C .
(b) Find the distance of the centre of C from the origin in the form $k \sqrt{5}$.

The point A lies on C and the tangent to C at A passes through the origin O.
(c) Show that $O A=6 \sqrt{2}$.
4. Given the following equation $4 x^{2}+9 y^{2}=36$
(a) Find the coordinates of the x and y intercepts of the equation.
(b) Find the length of the major and minor axes.
(c) Sketch the graph of the equation.

Total: 10 marks

5. The diagram shows a cube OABCDEFG in which the length of each side is 4 units. The unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are parallel to $\overrightarrow{O A}, \overrightarrow{O C}$ and $\overrightarrow{O D}$ respectively. The mid-points of OA and $D G$ are P and Q respectively and R is the centre of the square face $A B F E$.
(i) Express each of the vectors $\overrightarrow{P R}$ and $\overrightarrow{P Q}$ in terms of \mathbf{i}, \mathbf{j} and \mathbf{k}.
(ii) Use a scalar product to find angle QPR.
(iii)Find the perimeter of triangle PQR , giving your answer correct to 1 decimal place.[3]

Total: 9 marks
6. The points A and B have position vectors $2 i+6 j-k$ and $3 i+4 j+k$ respectively. The line l_{1} passes through the points A and B.
(i) Find the vector $\overrightarrow{A B}$.
(ii) Find a vector equation for the line l_{1}.

A second line l_{2} passes through the origin and is parallel to the vector $i+k$. The line l_{1} meets the line l_{2} at the point C.
(iii)Find the position vector of the point C.

