HARRISON COLLEGE INTERNAL EXAMINATION, MARCH 2015
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS
UNIT 1 - TEST 3
TIME: 1 Hour \& 20 minutes
This examination paper consists of 3 printed pages.
The paper consists of 3 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. (a) Find $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
(b) Find $\lim _{x \rightarrow 0} \frac{\sin \left(\frac{x}{5}\right)}{2 x}$
(c) The function f on \mathbb{R} is defined by

$$
f(x)= \begin{cases}\frac{2 x^{2}-x-15}{x-3}, & \text { if } x \neq 3 \\ k x-1, & \text { if } x=3\end{cases}
$$

Find the value of the constant k that makes f continuous at $x=3$.
(d) Let $y=x^{-3}$. Using first principles, find $\frac{d y}{d x}$.
2. (a) Find $f^{\prime}(x)$ when:
(i) $f(x)=\sqrt{\left(x^{3}-2 x\right)}$
(ii) $f(x)=\frac{2 x+1}{\sin 3 x}$
(b) A manufacturer asks for a cylindrical tub to be constructed to contain a volume of 1000 m^{3}. The tub is to be opened at the top and is to be made of material 1 cm in thickness. Let R be the internal radius and h be the internal height of the tub.
(i) Express h in terms of R.
(ii) Show that the internal surface area $A \mathrm{~m}^{2}$ is given by

$$
\begin{equation*}
A=\frac{2000}{R}+\pi R^{2} \tag{2}
\end{equation*}
$$

(iii) Hence determine the value of R which minimises the amount of material to be used.
(c) A curve is defined by the parametric equations

$$
\begin{equation*}
x=3-4 t \quad y=1+\frac{2}{t} \tag{4}
\end{equation*}
$$

(i) Find $\frac{d y}{d x}$ in terms of t.
(ii) Find the equation of the tangent to the given curve at the point where $t=2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

TOTAL 21 marks
3. (a) The gradient of a curve is given by $\frac{d y}{d x}=(2 x+1)^{-2}$. The point $(1,1)$ lies on the curve. Find the equation of the curve.
(b) (i) Find $\int_{0}^{1} \cos (1-3 x) d x$. Give your answer to 2 decimal places.
(ii) Using the substitution $u=x^{2}+2$, find

$$
\begin{equation*}
\int_{1}^{2} x\left(x^{2}+2\right)^{3} d x \tag{5}
\end{equation*}
$$

3. (c) Find the shaded area in the diagram below which is bounded by the graph of $f(x)=\sin 2 x+\sqrt{x}$, the x-axis and the lines $x=0$ and $x=2$.
Give your answer to 2 decimal places

(d) Solve the differential equation $\frac{d y}{d x}=5 \frac{x^{2}}{y}$ given that $y=3$ when $x=3$.

TOTAL 23 marks

End of test

