HARRISON COLLEGE INTERNAL EXAMINATION 2021 PREVIEW CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 2

Time: 1 hour and 20 minutes

1. a) Prove that

$$
\sin \left(\frac{\pi}{2}+\theta\right) \cos \left(\frac{\pi}{2}-\theta\right)+\cos \left(\frac{\pi}{2}+\theta\right) \sin \left(\frac{\pi}{2}-\theta\right)=0
$$

b) Show that

$$
(\sin x+\operatorname{cosec} x)^{2} \equiv \sin ^{2} x+\cot ^{2} x+3
$$

c) Find the general solution of the equation

$$
2 \cos ^{2} x=\sin x+1
$$

$$
\left[n \pi+(-1)^{n} \frac{\pi}{6}\right] \text { and }\left[n \pi-(-1)^{n} \frac{\pi}{2}\right]
$$

d) i) Express $3 \cos x-2 \sin x$ in the form $r \cos (x+\alpha)$ where $r>0$ and $0^{\circ} \leq x \leq 90^{\circ}$.

$$
\left[\sqrt{13} \cos \left(x+33.7^{0}\right)\right]
$$

ii) Hence, solve the equation $3 \cos x-2 \sin x=3$, for $0^{0} \leq x \leq 360^{\circ}$.
2. A circle, C, has equation $x^{2}+y^{2}+6 x+2 y+8=0$.
i) Find the radius and the coordinates of the centre of the circle.

$$
[\text { radius }=\sqrt{18}, \text { centre }(-3,-1)]
$$

ii) Find the equation of the tangent to the circle at the point $P(-2,-2)$.
[4 marks]

$$
[y=x]
$$

iii) The point P is at one end of the diameter of the circle C. Find the coordinates of the point Q, at the opposite end of the diameter from P.
[3 marks]

$$
[Q(-4,0)]
$$

Total 11 marks
3. a) A curve, C, has parametric equations

$$
x=3 \sin t \text { and } y=3 \cos t, 0 \leq \theta<\frac{\pi}{2}
$$

Find the Cartesian equation of C.

$$
\left[x^{2}+y^{2}=9\right]
$$

b) Find the points of intersection of the curve

$$
C_{1} \text { with parametric equations } x=2 t^{2}-1 \text { and } y=5 t
$$

and the line

$$
L_{1} \text { with Cartesian equation } 2 y=5 x+5
$$

4. a) Find the angle between the lines with equations

$$
r=\left(\begin{array}{c}
3 \\
-5 \\
-2
\end{array}\right)+\lambda\left(\begin{array}{c}
5 \\
-1 \\
-3
\end{array}\right) \text { and } \frac{x-4}{-2}=\frac{y+3}{2}=\frac{z+8}{-6}
$$

b) Find the point of intersection of the lines with equations

$$
r_{1}=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right) \text { and } r_{2}=\left(\begin{array}{c}
-1 \\
2 \\
-5
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)
$$

$$
\left[\left(\frac{5}{4}, \quad-\frac{1}{4}, \quad-\frac{1}{2}\right)\right]
$$

c) Find the Cartesian equation of the plane passing through the point $A(4,3,3)$ and parallel to the plane with equation $2 x-y+2 z=10$.

$$
[2 x-y+2 z]
$$

