HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2019
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT I - TEST 1
 1 hour 20 minutes

This examination paper consists of $\mathbf{2}$ printed pages.
This paper consists of $\mathbf{9}$ questions.
The maximum mark for this examination is $\mathbf{6 0}$.
INSTRUCTIONS TO CANDIDATES
(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1) Given that \boldsymbol{p} and \boldsymbol{q} are propositions, use the algebra of propositions to prove $\sim(\boldsymbol{p} \vee \sim \boldsymbol{q}) \vee(\sim \boldsymbol{p} \wedge \sim \boldsymbol{q}) \equiv \sim \boldsymbol{p}$

Total: 4 marks
2) Prove that for all $x \in \boldsymbol{R}, y \in \boldsymbol{R} ; x^{2}+y^{2} \geq 2 x y$

Total: 3 marks
3) Without the use of a calculator, find the EXACT value of $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}+\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}$

Total: 4 marks
4) Prove by mathematical induction that $\sum_{r=1}^{n} 2\left(3^{r-1}\right)=3^{n}-1 \forall n \in N$.

Total: 7 marks
5) Given that $(x-1)$ is a factor of the function $f(x)=x^{3}+p x^{2}+5 x-12$, where $p \in \boldsymbol{R}$, find
(i) the value of p
(ii) the remaining factors of $f(x)$.
6) (a) Solve for $x, 3 \log _{5} x-5=2 \log _{x} 5$.
(b) Solve for x the following equation $e^{x}+2 e^{-x}=3$.

Total: 10 marks
7) The population, $P(t)$, of fish found in a swamp after t days is modelled by $P(t)=1000 e^{0.04 t}$
(i) Determine for the swamp
(a) the initial population
(b) the population after 8 days
(ii) The length of time, in days, for which the population is expected to reach 2500 .
8) Find the range of values of x for which $\left|\frac{2 x+9}{x-3}\right| \leq 7, x \neq 3$.

Total: 5 marks
9) If α, β and γ are the roots of the equation $2 x^{3}-11 x^{2}+4 x+5=0$
(i) find the values of $\alpha+\beta+\gamma, \alpha \beta+\alpha \gamma+\beta \gamma$ and $\alpha \boldsymbol{\alpha} \boldsymbol{\gamma}$
(ii) hence, or otherwise, find the equation with roots $\alpha+1, \beta+1$ and $\gamma+\mathbf{1}$.

Total: 12 marks

END OF TEST

[UNIT I - TEST 1]

SOLUTIONS AND MARK SCHEME

Question	Working	Marks \& Comments
1)	$\sim(p \vee \sim q) \vee(\sim p \wedge \sim q) \equiv \sim p$ Proof: LHS $\begin{aligned} & \sim(p \vee \sim q) \vee(\sim p \wedge \sim q) \\ & =(\sim p \wedge q) \vee(\sim p \wedge \sim q) \\ & =\sim p \wedge(q \vee \sim q) \\ & =\sim p \wedge(1) \\ & =\sim p \end{aligned}$	$\begin{array}{ll} 1 & \\ 1 & \\ 1 & \\ 1 & \text { Total }=4 \text { marks } \end{array}$
2)	Prove that for all $x \in \boldsymbol{R}, y \in \boldsymbol{R} ; x^{2}+y^{2} \geq 2 x y$ Proof: $\left\lvert\, \begin{aligned} & (x-y)^{2} \geq 0 \text { for all } x \in \boldsymbol{R}, y \in \boldsymbol{R} \\ & x^{2}+y^{2}-2 x y \geq 0 \\ & x^{2}+y^{2} \geq 2 x y \end{aligned}\right.$	$\begin{array}{ll} 1 & \\ 1 & \\ 1 & \text { Total }=3 \text { marks } \end{array}$
3)	$\begin{aligned} & \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}+\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \\ & =\frac{(\sqrt{5}+\sqrt{2})(\sqrt{5}+\sqrt{2})+(\sqrt{5}-\sqrt{2})(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})} \\ & =\frac{(5+2 \sqrt{5} \sqrt{2}+2)+(5-2 \sqrt{5} \sqrt{2}+2)}{5-2} \\ & =\frac{14}{3} \end{aligned}$	$\begin{aligned} & {[1+1] \text { Numerator + Denominator }} \\ & 1 \\ & 1 \text { CAO Total }=4 \text { marks } \end{aligned}$

4)	 Let \boldsymbol{P}_{n} be the proposition " $\sum_{r=1}^{n} \mathbf{2}\left(\mathbf{3}^{r-\mathbf{1}}\right)=\mathbf{3}^{n}-\mathbf{1} \forall n \in N^{\prime}$ " Basic Step $\begin{aligned} & r=1: \mathrm{LHS}=2\left(3^{1-1}\right)=2 \\ & \left.n=1: \mathrm{RHS}=3^{1}-1\right)=2 \end{aligned}$ $\therefore \boldsymbol{P}_{1}$ is true Inductive Step Assume \boldsymbol{P}_{n} is true for $n=k$ i.e. $\boldsymbol{P}_{k} \equiv " \sum_{r=1}^{k} \mathbf{2 (3 ^ { r - 1 })}=\mathbf{3}^{k}-\mathbf{1} \forall k \in N, k>1$ " We are required to show that $\boldsymbol{P}_{\boldsymbol{k}+\mathbf{1}} \equiv \sum_{r=1}^{k+1} \mathbf{2}\left(\mathbf{3}^{r-\mathbf{1}}\right)=\mathbf{3}^{k+1}-\mathbf{1}$ Now $\boldsymbol{P}_{\boldsymbol{k}+\mathbf{1}}=P_{k}+(k+1) s t$ term $\begin{aligned} & =\left(3^{k}-1\right)+2\left(3^{k+1-1}\right) \\ & =3^{k}-1+2\left(3^{k}\right) \\ & =3\left(3^{k}\right)-1 \\ & =3^{k+1}-1 \text { As required } \end{aligned}$ $\boldsymbol{P}_{\boldsymbol{k}}$ implies $\boldsymbol{P}_{\boldsymbol{k}+\boldsymbol{1}}$ i.e. \boldsymbol{P}_{1} implies $\boldsymbol{P}_{2}, \boldsymbol{P}_{2}$ implies $\boldsymbol{P}_{3}, \ldots, \boldsymbol{P}_{\boldsymbol{n}-1}$ implies $\boldsymbol{P}_{\boldsymbol{n}}$ Hence, by Mathematical Induction, $\boldsymbol{P}_{\boldsymbol{n}}$ is true.	1 Total $=7$ marks
5)(i)	$\begin{aligned} & f(x)=x^{3}+p x^{2}+5 x-12 \\ & f(1)=0 \\ & \text { implies }(1)^{3}+p(1)^{2}+5(1)-12=0 \\ & p=6 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \text { Total }=2 \text { marks } \end{aligned}$
5)(ii)	$\begin{aligned} & f(x)=x^{3}+6 x^{2}+5 x-12 \\ & f(x)=(x-1)\left(x^{2}+7 x-12\right) \\ & f(x)=(x-1)(x+3)(x+4) \end{aligned}$	1 , for quotient $1+1$, for process of getting the quotient, and factorizing it. 2 marks for remaining factors Total $=5$ marks

6$)(\mathrm{a})$	$3 \log _{5} x-5=2 \log _{x} 5$ $3 \log _{5} x-5=\frac{2}{\log _{x} 5}$ $3\left(\log _{x} 5\right)^{2}-5 \log _{x} 5-2=0$ $\left(3 \log _{x} 5+1\right)\left(\log _{x} 5-2\right)=0$ $\log _{x} 5=-\frac{1}{3}, \log _{x} 5=2$ $x=\frac{1}{\sqrt[3]{5}}, x=25$ $6(\mathrm{~b})$ $e^{x}+2 e^{-x}=3$ $e^{x}+\frac{2}{e^{x}}-3=0$ $e^{2 x}-3 e^{x}+2=0$ $\left(e^{x}-2\right)\left(e^{x}-1\right)=0$ $e^{x}=2, e^{x}=1$ $x=\ln 2, x=0$	1

7) (i)	(a) the initial population at $t=0, P(0)=1000 \mathrm{e}^{0}$ 1000 (b) for $t=8, P(8)=1000 \times \mathrm{e}^{0.04(8)}$ $=1377$	1	$\text { Total }=4 \text { marks }$
7) (ii)	$\begin{aligned} & 2500=1000 \times \mathrm{e}^{0.04 t} \\ & 2.5=\mathrm{e}^{0.04 t} \\ & \ln 2.5=0.04 t \\ & 23.9 \text { days }=t \end{aligned}$	1 1 1 1	$\text { Total }=4 \text { marks }$

8)	$\left\lvert\, \begin{aligned} & \left\|\frac{2 x+9}{x-3}\right\| \leq 7, x \neq 3 \\ & \|2 x+9\| \leq 7\|x-3\| \\ & (2 x+9)^{2} \leq 49(x-3)^{2} \\ & 4 x^{2}+36 x+81 \leq 48 x^{2}-294 x+441 \\ & 0 \leq 45 x^{2}-330 x+360 \\ & 0 \leq 3 x^{2}-22 x+24 \\ & 0 \leq(3 x-4)(x-6) \\ & x \leq \frac{4}{3}, x \geq 6 \quad \text { FT } \end{aligned}\right.$	1 $1+1 \quad$ Total $=5$ marks
9)(i)	$\begin{aligned} & 2 x^{3}-11 x^{2}+4 x+5=0 \\ & \alpha+\beta+\gamma=-\frac{b}{a}=\frac{11}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}=2 \\ & \alpha \beta \gamma=-\frac{d}{a}=-\frac{5}{2} \end{aligned}$	$\begin{array}{ll} 1 & \\ 1 & \\ 1 & \text { Total }=3 \text { marks } \end{array}$
9)(ii)	Sum; $\begin{aligned} & (\alpha+1)+(\beta+1)+(\gamma+1) \\ & =\alpha+\beta+\gamma+3 \\ & =\frac{17}{2} \end{aligned}$ Sum Pairwise; $\begin{aligned} & (\alpha+1)(\beta+1)+(\alpha+1)(\gamma+1)+(\beta+1)(\gamma+1) \\ & =(\alpha \beta+\alpha \gamma+\beta \gamma)+2(\alpha+\beta+\gamma)+3 \\ & =2+2\left(\frac{11}{2}\right)+3 \\ & =16 \end{aligned}$ Product; $\begin{aligned} & (\alpha+1)(\beta+1)(\gamma+1) \\ & =\alpha \beta \gamma+(\alpha \beta+\alpha \gamma+\beta \gamma)+(\alpha+\beta+\gamma)+1 \\ & =-\frac{5}{2}+2+\frac{11}{2}+1 \\ & =6 \end{aligned}$ Required equation; $x^{3}-\frac{17}{2} x^{2}+16 x-6=0$ OR $2 x^{3}-17 x^{2}+32 x-12=0$	1 1 1 1 1 1 Total $=9$ marks

9)(ii)	$2 x^{3}-11 x^{2}+4 x+5=0$ $x=(\alpha+1),(\beta+1),(\gamma+1)$ A.e. $x=\mathrm{X}+1 \rightarrow x-1=\mathrm{X}$	1
	$2(x-1)^{3}-11(x-1)^{2}+4(x-1)+5=0$ $2\left(x^{3}-3 x^{2}+3 x-1\right)-11\left(x^{2}-2 x+1\right)+4 x+1=0$ $2 x^{3}-6 x^{2}+6 x-2-11 x^{2}+22 x-11+4 x+1=0$ $2 x^{3}-17 x^{2}+32 x-12=0$	1
		1
		1 Total = 9 marks

