HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2019 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT I – TEST 1 1 hour 20 minutes

This examination paper consists of **2** printed pages. This paper consists of **9** questions. The maximum mark for this examination is **60**.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer ALL questions
- (iii) Number your questions identically as they appear on the question paper and do **NOT** write your solutions to different questions beside each other
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

- (a) Mathematical formulae
- (b) Scientific calculator (non-programmable, non-graphical)
- 1) Given that p and q are propositions, use the <u>algebra of propositions</u> to prove $\sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv \sim p$ [4]
 Total: 4 marks

2) Prove that for all
$$x \in \mathbf{R}$$
, $y \in \mathbf{R}$; $x^2 + y^2 \ge 2xy$

Total: 3 marks

[3]

3) Without the use of a calculator, find the EXACT value of
$$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} + \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$$
 [4]

Total: 4 marks

4) Prove by mathematical induction that
$$\sum_{r=1}^{n} 2(3^{r-1}) = 3^n - 1 \quad \forall n \in N.$$
 [7]
Total: 7 marks

5) Given that (x - 1) is a factor of the function $f(x) = x^3 + px^2 + 5x - 12$, where $p \in \mathbf{R}$, find

- (i) the value of p [2]
- (ii) the remaining factors of f(x). [5]

Total: 7marks

Please Turn Over

- 6) (a) Solve for x, $3log_5x 5 = 2log_x 5$. [6]
 - (b) Solve for x the following equation $e^{x} + 2e^{-x} = 3$. [4]

Total: 10 marks

7) The population, P(t), of fish found in a swamp after t days is modelled by $P(t) = 1000e^{0.04t}$

- (i) Determine for the swamp
 (a) the initial population [2]
 (b) the population after 8 days [2]
 (ii) The length of time, in days, for which the population is expected to reach 2500. [4] Total: 8 marks
- 8) Find the range of values of x for which $\left|\frac{2x+9}{x-3}\right| \le 7, x \ne 3.$ [5] Total: 5 marks

9) If α , β and γ are the roots of the equation $2x^3 - 11x^2 + 4x + 5 = 0$

(i) find the values of $\alpha + \beta + \gamma$, $\alpha\beta + \alpha\gamma + \beta\gamma$ and $\alpha\beta\gamma$ [3] (ii) hence, or otherwise, find the equation with roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$. [9] Total: 12 marks

END OF TEST

HARRISON COLLEGE INTERNAL EXAMINATIONS 2019: CAPE PURE MATHEMATICS

<u>[UNIT I – TEST 1]</u>

SOLUTIONS	AND	MARK	SCHEME

Question	Working	Marks & Comments
1)	$\sim (p \lor \sim q) \lor (\sim p \land \sim q) \equiv \sim p$ <u>Proof: LHS</u> $\sim (p \lor \sim q) \lor (\sim p \land \sim q)$ $= (\sim p \land q) \lor (\sim p \land \sim q)$ $= \sim p \land (q \lor \sim q)$ $= \sim p \land (1)$	1 1 1 1 Total = 4 marks
2)	Prove that for all $x \in \mathbf{R}$, $y \in \mathbf{R}$; $x^2 + y^2 \ge 2xy$ <u>Proof:</u> $(x-y)^2 \ge 0$ for all $x \in \mathbf{R}$, $y \in \mathbf{R}$ $x^2 + y^2 - 2xy \ge 0$ $x^2 + y^2 \ge 2xy$	1 1 1 Total = 3 marks
3)	$\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - \sqrt{2}} + \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + \sqrt{2}}$ $= \frac{(\sqrt{5} + \sqrt{2})(\sqrt{5} + \sqrt{2}) + (\sqrt{5} - \sqrt{2})(\sqrt{5} - \sqrt{2})}{(\sqrt{5} - \sqrt{2})(\sqrt{5} + \sqrt{2})}$ $= \frac{(5 + 2\sqrt{5}\sqrt{2} + 2) + (5 - 2\sqrt{5}\sqrt{2} + 2)}{5 - 2}$ $= \frac{14}{3}$	 [1 + 1] Numerator + Denominator 1 1 CAO Total = 4 marks

4)	Prove by mathematical induction that $\sum_{r=1}^{n} 2(3^{r-1}) = 3^n - 1 \forall n \in N.$	
	Let P_n be the proposition " $\sum_{r=1}^n 2(3^{r-1}) = 3^n - 1 \forall n \in N$ "	
	Basic Step	
	r = 1: LHS = 2(3 ¹⁻¹) = 2	1
	$n = 1$: RHS = $3^1 - 1$) = 2	1
	$\therefore P_1$ is true	
	Inductive Step	
	Assume P_n is true for $n = k$ i.e. $P_k \equiv \sum_{r=1}^k 2(3^{r-1}) = 3^k - 1 \forall k \in N, k > 1$ "	1
	We are required to show that $P_{k+1} \equiv \sum_{r=1}^{k+1} 2(3^{r-1}) = 3^{k+1} - 1$	
	Now $P_{k+1} = P_k + (k+1)st$ term	
	$=(3^{k}-1)+2(3^{k+1-1})$	
	$=3^{k}-1+2(3^{k})$	1
	$=3(3^k)-1$	1
	$= 3^{k+1} - 1$ As required	1
	P_k implies P_{k+1}	
	i.e. P_1 implies P_2 , P_2 implies P_3 ,, P_{n-1} implies P_n	1
	Hence, by Mathematical Induction, P_n is true.	l Total = 7 marks
5)(i)	$f(x) = x^3 + px^2 + 5x - 12$	
5)(1)	f(1) = 0	
		1
	implies $(1)^3 + p(1)^2 + 5(1) - 12 = 0$	1
	p = 6	Total = 2 marks
5)(ii)	$f(x) = x^3 + 6x^2 + 5x - 12$	1, for quotient
		1 + 1, for process
	$f(x) = (x - 1)(x^2 + 7x - 12)$ f(x) = (x - 1)(x + 3)(x + 4)	of getting the
	$\int (x) - (x - 1)(x + 3)(x + 4)$	quotient, and
		factorizing it.
		2 marks for
		remaining factors
		Total = 5 marks

6)(a)	$3log_5x - 5 = 2log_x 5$	
	$3\log_5 x - 5 = \frac{2}{\log_x 5}$	1
	$3(\log_x 5)^2 - 5\log_x 5 - 2 = 0$	1
	$(3log_x 5 + 1)(log_x 5 - 2) = 0$	
	$log_x 5 = -\frac{1}{3}, log_x 5 = 2$	1+1
	$x = \frac{1}{\sqrt[3]{5}}, x = 25$	1+1
		Total = 6 marks
6(b)	$e^x + 2e^{-x} = 3$	
	$e^x + \frac{2}{e^x} - 3 = 0$	
	$e^{2x} - 3e^{x} + 2 = 0$	1
	$(e^x - 2)(e^x - 1) = 0$	1
	$e^x = 2, e^x = 1$	
	$x = \ln 2, x = 0$	1+1
		Total = 4 marks

7) (i)	(a) the initial population at $t = 0$, $P(0) = 1000e^{0}$ = 1000 (b) for $t = 8$, $P(8) = 1000 \times e^{0.04(8)}$ = 1377	1 1 1 1	Total = 4 marks
7) (ii)	$2500 = 1000 \times e^{0.04t}$ 2.5 = e ^{0.04t} ln 2.5 = 0.04t 23.9 days = t	1 1 1 1	Total = 4 marks

8)	$\left \frac{2x+9}{x-3}\right \le 7, x \ne 3.$ $ 2x+9 \le 7 x-3 $	1
		1
	$(2x+9)^2 \le 49(x-3)^2$	
	$4x^2 + 36x + 81 \le 48x^2 - 294x + 441$	
	$0 \le 45x^2 - 330x + 360$	
	$0 \le 3x^2 - 22x + 24$	
	$0 \le (3x-4)(x-6)$	1
	$x \le \frac{4}{3}, x \ge 6$ FT	1 + 1 Total = 5 marks
9)(i)	$2x^3 - 11x^2 + 4x + 5 = 0$	
	$\alpha + \beta + \gamma = -\frac{b}{a} = \frac{11}{2}$	1
		1
	$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{a} = 2$	1
	$\alpha\beta\gamma = -\frac{d}{a} = -\frac{5}{2}$	1 Total = 3 marks
9)(ii)	Sum;	
	$(\alpha + 1) + (\beta + 1) + (\gamma + 1)$	
	$= \alpha + \beta + \gamma + 3$	1
	$=\frac{17}{2}$	1
	Sum Pairwise;	
	$(\alpha + 1)(\beta + 1) + (\alpha + 1)(\gamma + 1) + (\beta + 1)(\gamma + 1)$	
	$= (\alpha\beta + \alpha\gamma + \beta\gamma) + 2(\alpha + \beta + \gamma) + 3$	
	$=2+2(\frac{11}{2})+3$	1
	= 16	1
	Product;	1
	$(\alpha + 1)(\beta + 1)(\gamma + 1)$	
	$= \alpha\beta\gamma + (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) + 1$	1
	$= -\frac{5}{2} + 2 + \frac{11}{2} + 1$	1
	= 6	1
	Required equation; $x^3 - \frac{17}{2}x^2 + 16x - 6 = 0$	
	$OR \ 2x^3 - 17x^2 + 32x - 12 = 0$	1 Total = 9 marks

9)(ii)	$2x^3 - 11x^2 + 4x + 5 = 0$	
Alternative Solution	$x = (\alpha + 1), \ (\beta + 1), \ (\gamma + 1)$	1
	i.e. $x = X + 1 \rightarrow x - 1 = X$	1
		1
	$2 (x-1)^3 - 11(x-1)^2 + 4 (x-1) + 5 = 0$	1
	$2(x^{3} - 3x^{2} + 3x - 1) - 11(x^{2} - 2x + 1) + 4x + 1 = 0$ $2x^{3} - 6x^{2} + 6x - 2 - 11x^{2} + 22x - 11 + 4x + 1 = 0$	1
	$2x^3 - 6x^2 + 6x - 2 - 11x^2 + 22x - 11 + 4x + 1 = 0$	1
	$2x^3 - 17x^2 + 32x - 12 = 0$	1-mark x 4
		Total = 9 marks