HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2019
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT I -TEST 2
 1 hour 20 minutes

This examination paper consists of $\mathbf{3}$ printed pages.
This paper consists of $\mathbf{6}$ questions.
The maximum mark for this examination is $\mathbf{6 0}$.
INSTRUCTIONS TO CANDIDATES
(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT
write your solutions to different questions beside each other
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1) Prove that $\frac{\cos A}{1-\sin A}+\frac{1-\sin A}{\cos A} \equiv \frac{2}{\cos A}$.

Total 5 marks
2) (i) Prove that $\frac{\sin 9 A-\sin 5 A}{\cos 9 A+\cos 5 A} \equiv \tan 2 A$.
(ii) Hence, find the general solution of the equation $\frac{\sin 9 A-\sin 5 A}{\cos 9 A+\cos 5 A}=\sqrt{3}$.

Total 8 marks

Please Turn Over

3) (i) Express $\cos x-3 \sin x$ in the form $\boldsymbol{R} \cos (x+\alpha)$, where $\boldsymbol{R}>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$, giving the exact value of \boldsymbol{R}, and the value of α correct to 3 decimal places.
(ii) Hence, solve the equation $\cos x-3 \sin x=\sqrt{5}$ for $0 \leq x \leq 2 \pi$, giving your answers correct to 1 decimal place.

Total 12 marks

4) Find the coordinates of the points of intersection of the two circles
$x^{2}+y^{2}+8 x+2 y-2=0$ and $x^{2}+y^{2}+8 x+4 y+2=0$, giving your answers in exact form
5) (a) (i) Find the Cartesian equation of the curve, C, represented by the parametric equations

$$
\begin{equation*}
x=7+5 \cos \theta \text { and } y=-2+5 \sin \theta \tag{4}
\end{equation*}
$$

(ii) Describe fully, the locus of C.
(b) A line, \boldsymbol{l}, passes through the point $\boldsymbol{P}(2,-3,4)$ and is parallel to the vector $5 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$.

Find, for the line \boldsymbol{l}
(i) its vector equation
(ii) its cartesian equations
(c) Find the angle between the lines with equations

$$
\begin{aligned}
& \boldsymbol{r}_{1}=(5+6 \lambda) \boldsymbol{i}+(2-5 \lambda) \boldsymbol{j}+(-8+2 \lambda) \boldsymbol{k} \text { and } \\
& \boldsymbol{r}_{2}=(-4-8 \mu) \boldsymbol{i}+(-7+\mu) \boldsymbol{j}+(6-4 \mu) \boldsymbol{k} \text {, giving your answer correct to } 1 \text { decimal } \\
& \text { place. }
\end{aligned}
$$

Total 17 marks

Please Turn Over

6) A plane contains three non-collinear points $\boldsymbol{A}(-1,2,-5), \boldsymbol{B}(7,-4,6)$ and $\boldsymbol{C}(3,2,-4)$
(i) Determine the vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$
(ii) Prove that the vector $-\boldsymbol{i}+6 \boldsymbol{j}+4 \boldsymbol{k}$ is normal to the plane
(iii) Hence, obtain the Cartesian equation of the plane
(iv) Find the perpendicular distance of the plane from the origin.

END OF TEST

HARRISON COLLEGE INTERNAL EXAMINATIONS 2019: CAPE PURE MATHEMATICS
[UNIT I - TEST 2]
SOLUTIONS AND MARK SCHEME

Question	Working	Marks and Comments
1)	Prove that $\frac{\cos A}{1-\sin A}+\frac{1-\sin A}{\cos A} \equiv \frac{2}{\cos A}$. Proof: LHS $\begin{aligned} & \frac{\cos A}{1-\sin A}+\frac{1-\sin A}{\cos A} \\ & =\frac{\cos \cos A+(1-\sin A)(1-\sin A)}{(1-\sin A) \cos A} \\ & =\frac{\cos ^{2} A+1-2 \operatorname{Sin} A+\operatorname{Sin}^{2} A}{(1-\sin A) \cos A} \\ & =\frac{2-2 \operatorname{Sin} A}{(1-\sin A) \cos A} \\ & =\frac{2(1-\operatorname{Sin} A)}{(1-\sin A) \cos A} \\ & = \\ & \frac{2}{\cos A} \end{aligned}$	1, Numerator 1, Denominator 1 1 1 Total $=5$ marks
2) (i)	Prove that $\frac{\sin 9 A-\sin 5 A}{\cos 9 A+\cos 5 A} \equiv \tan 2 A$. Proof: LHS $\begin{aligned} & \frac{\sin 9 A-\sin 5 A}{\cos 9 A+\cos 5 A} \\ & =\frac{2 \cos \frac{14 A}{2} \sin \frac{4 A}{2}}{2 \cos \frac{14 A}{2} \cos \frac{4 A}{2}} \\ & =\frac{2 \cos 7 A \sin 2 A}{2 \cos 7 A \cos 2 A} \end{aligned}$	1, Numerator 1, Denominator 1 1 Total = 4 marks

	$=\tan 2 A$	
2 (ii)	$\begin{aligned} & \frac{\sin 9 \mathrm{~A}-\sin 5 A}{\cos 9 A+\cos 5 A}=\sqrt{3} \\ & \tan 2 A=\sqrt{3} \\ & \text { Principal value, } \frac{\pi}{3} \\ & \text { General solution } 2 A=n \pi+\frac{\pi}{3} \\ & \qquad A=\frac{n \pi}{2}+\frac{\pi}{6} \end{aligned}$	$\begin{array}{ll} 1 & \\ 1 & \\ 1 & \\ 1 & \text { Total }=4 \text { marks } \end{array}$
3) (i)	$\begin{aligned} & \cos x-3 \sin x \equiv R \cos (x+\alpha) \\ & R \cos \alpha=1 \\ & R \sin \alpha=3 \\ & R=\sqrt{10} \\ & \tan \alpha=3 \\ & \alpha=1.249 \mathrm{rad} \\ & \cos x-3 \sin x \equiv \sqrt{10} \cos (x+1.249) \end{aligned}$	1 1 1 1 1 1 Total $=6$ marks
3) (ii)	$\begin{aligned} & \cos x-3 \sin x=\sqrt{5} \\ & \sqrt{10} \cos (x+1.249)=\sqrt{5} \\ & \cos (x+1.249)=\frac{1}{\sqrt{2}} \end{aligned}$ Principal value, 0.785 rad $\begin{aligned} & \text { General solution }(x+1.249)=2 n \pi \pm 0.785 \\ & \qquad \begin{array}{c} x=2 n \pi \pm 0.785-1.249 \\ x=4.2 \mathrm{rad}, 5.8 \mathrm{rad} \end{array} \end{aligned}$	1 1 1 1 2 Total = 6 marks
4)	$\begin{aligned} & x^{2}+y^{2}+8 x+2 y-2=0 \text { Eqn } 1 \\ & \frac{x^{2}+y^{2}+8 x+4 y+2=0}{} \quad \text { Eqn } 2 \\ & 2 y+4=0 \\ & y=-2 \text { sub. Into Eqn } 1 \end{aligned}$	1

	$\begin{aligned} & x^{2}+8 x-2=0 \\ & x=\frac{-8 \pm \sqrt{72}}{2} \\ & x=-4 \pm 3 \sqrt{2} \end{aligned}$ Points of intersection, $(-4-3 \sqrt{2},-2)$ and $(-4+3 \sqrt{2},-2)$	1 1 2 1 1 Total $=7$ marks
5) (a)(i)	$\begin{aligned} & x=7+5 \cos \theta \rightarrow \frac{x-7}{5}=\cos \theta \\ & y=-2+5 \sin \theta \rightarrow \frac{y+2}{5}=\sin \theta \\ & \cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{x-7}{5}\right)^{2}+\left(\frac{y+2}{5}\right)^{2} \\ & 5^{2}=(x-7)^{2}+(y+2)^{2} \end{aligned}$	1 1 1 1 Total $=4$ marks
5) (a)(ii)	C represents a Circle, centre ($7,-2$), radius 5	$1+1+1$ Total $=3$ marks
5 (b)(i)	vector equation, $\boldsymbol{r}=\left(\begin{array}{c}2 \\ -3 \\ 4\end{array}\right)+\lambda\left(\begin{array}{c}5 \\ 2 \\ -1\end{array}\right)$	1, for point 1, for direction vector Total $=2$ marks
5 (b)(ii)	cartesian equations, $\frac{x-2}{5}=\frac{y+3}{2}=\frac{z-4}{-1}$	1+1+1 Total = 3 marks
5 (c)	$\left.\begin{array}{l} \boldsymbol{r}_{1}=(5+6 \lambda) \boldsymbol{i}+(2-5 \lambda) \boldsymbol{j}+(-8+2 \lambda) \boldsymbol{k} \\ \boldsymbol{r}_{2}=(-4-8 \mu) \boldsymbol{i}+(-7+\mu) \boldsymbol{j}+(6-4 \mu) \boldsymbol{k} \\ \cos \theta=\frac{\left(\begin{array}{c} 6 \\ -5 \\ 2 \end{array}\right) \cdot\left(\begin{array}{c} -8 \\ 1 \\ -4 \end{array}\right)}{\left.\left\|\left(\begin{array}{c} 6 \\ -5 \\ 2 \end{array}\right)\right\|\left(\begin{array}{c} -8 \\ 1 \\ -4 \end{array}\right) \right\rvert\,} \\ \quad=\frac{-48-5-8}{(\sqrt{65})(\sqrt{81})} \end{array}\right\} \begin{aligned} & \theta=\cos ^{-1}\left(-\frac{61}{9 \sqrt{65}}\right) \\ & \theta=32.8^{0} \text { or } 147.2^{0} \text { OR } 0.6 \mathrm{rad} \text { or } 2.6 \mathrm{rad} \end{aligned}$	1, numerator 1, denominator 1, numerator 1, denominator 1 Total = 5 marks

6) (i)	$\begin{aligned} & \overrightarrow{A B}=\left(\begin{array}{c} 8 \\ -6 \\ 11 \end{array}\right) \\ & \overrightarrow{B C}=\left(\begin{array}{c} -4 \\ 6 \\ -10 \end{array}\right) \end{aligned}$	1 1 Total = 2 marks
6) (ii)	$\begin{aligned} & \boldsymbol{n} \cdot \overrightarrow{A B}=\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right) \cdot\left(\begin{array}{c} 8 \\ -6 \\ 11 \end{array}\right)=-8-36+44=0 \\ & \boldsymbol{n} \cdot \overrightarrow{B C}=\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right) \cdot\left(\begin{array}{c} -4 \\ 6 \\ -10 \end{array}\right)=4+36-40=0 \end{aligned}$ Since \boldsymbol{n} is perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{B C}$, it is perpendicular to the plane through $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C}	1 1 1 Total $=3$ marks
6) (iii)	$\text { Cartesian equation, } \begin{aligned} &\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right)=\left(\begin{array}{c} -1 \\ 2 \\ -5 \end{array}\right) \cdot\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right) \\ &=1+12-20 \\ & \text { i.e. } r\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right)=7 \\ &-x+6 y+4 z=-7 \text { OR } x-6 y-4 z=7 \end{aligned}$	$1+1 \text { [LHS + RHS }]$ 1 Total $=3$ marks
6) (iv)	$\begin{aligned} & \boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n}=d \\ & \boldsymbol{r} \cdot \hat{\boldsymbol{n}}=\boldsymbol{a} \cdot \widehat{\boldsymbol{n}}=\frac{d}{\|\boldsymbol{n}\|} \\ & \widehat{\boldsymbol{n}}=\frac{1}{\sqrt{(-1)^{2}+6^{2}+4^{2}}}\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right)=\frac{1}{\sqrt{53}}\left(\begin{array}{c} -1 \\ 6 \\ 4 \end{array}\right) \\ & \boldsymbol{r} \cdot \widehat{\boldsymbol{n}}=\frac{-7}{\sqrt{53}} \\ & \text { Perpendicular distance }=\left\|\frac{-7}{\sqrt{53}}\right\| \\ & \quad=\frac{7}{\sqrt{53}} \end{aligned}$	1 1 1 Total $=3$ marks

