HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2019 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT

PURE MATHEMATICS UNIT I –TEST 2 1 hour 20 minutes

This examination paper consists of 3 printed pages.

This paper consists of 6 questions.

The maximum mark for this examination is **60**.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer **ALL** questions
- (iii) Number your questions identically as they appear on the question paper and do **NOT**write your solutions to different questions beside each other
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

- (a) Mathematical formulae
- (b) Scientific calculator (non-programmable, non-graphical)

1) Prove that
$$\frac{\cos A}{1 - \sin A} + \frac{1 - \sin A}{\cos A} \equiv \frac{2}{\cos A}$$
. [5]

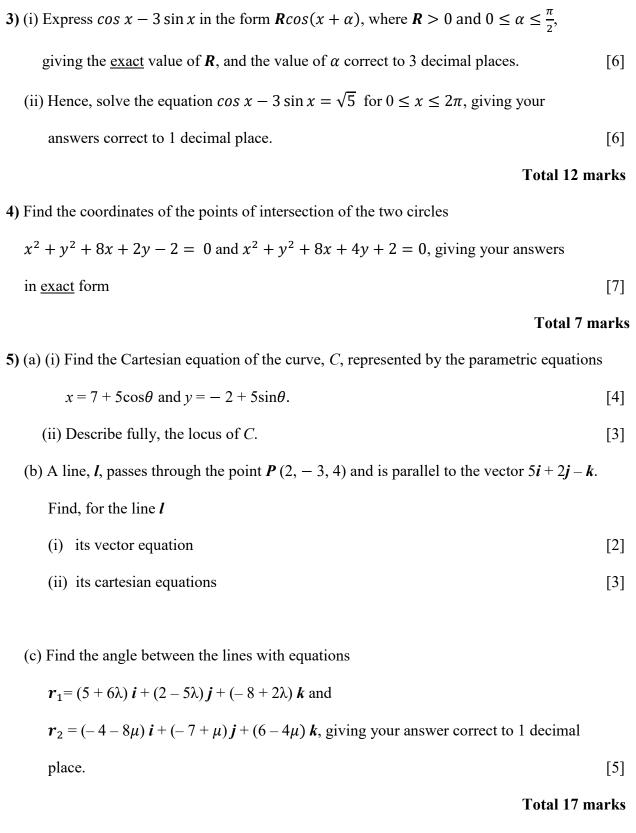
Total 5 marks

2) (i) Prove that
$$\frac{\sin 9A - \sin 5A}{\cos 9A + \cos 5A} \equiv \tan 2A.$$
 [4]

(ii) Hence, find the general solution of the equation
$$\frac{\sin 9A - \sin 5A}{\cos 9A + \cos 5A} = \sqrt{3}.$$
 [4]

Total 8 marks

Please Turn Over



Please Turn Over

6) A plane contains three non-collinear points A(-1, 2, -5), B(7, -4, 6) and C(3, 2, -4)

(i) Determine the vectors \overrightarrow{AB} and \overrightarrow{BC} [2]

(ii) Prove that the vector $-\mathbf{i} + 6\mathbf{j} + 4\mathbf{k}$ is normal to the plane [3]

(iii) Hence, obtain the Cartesian equation of the plane [3]

(iv) Find the perpendicular distance of the plane from the origin. [3]

Total 11 marks

END OF TEST

HARRISON COLLEGE INTERNAL EXAMINATIONS 2019: CAPE PURE MATHEMATICS

[UNIT I – TEST 2]

SOLUTIONS AND MARK SCHEME

Question	Working	Marks and Comments		
1)	Prove that $\frac{\cos A}{1 - \sin A} + \frac{1 - \sin A}{\cos A} \equiv \frac{2}{\cos A}$. Proof: LHS $\cos A \qquad 1 - \sin A$			
	$\frac{\cos A}{1 - \sin A} + \frac{1 - \sin A}{\cos A}$			
	$=\frac{\cos\cos A + (1-\sin A)(1-\sin A)}{(1-\sin A)\cos A}$	1, Numerator		
		1, Denominator		
	$=\frac{\cos^2 A + 1 - 2SinA + Sin^2 A}{(1 - \sin A)\cos A}$	1		
	$=\frac{2-2SinA}{(1-\sin A)cosA}$	1		
	$=\frac{2(1-SinA)}{(1-\sin A)cosA}$			
	=	1 Total = 5 marks		
	$\frac{2}{\cos A}$			
2) (i)	Prove that $\frac{\sin 9A - \sin 5A}{\cos 9A + \cos 5A} \equiv \tan 2A$.			
	Proof: LHS			
	$\frac{\sin 9A - \sin 5A}{\cos A}$			
	$\cos 9A + \cos 5A$ $= \frac{2\cos\frac{14A}{2}\sin\frac{4A}{2}}{2}$	1, Numerator		
	$=\frac{2\cos\frac{2}{2}\sin\frac{2}{2}}{2\cos\frac{14A}{2}\cos\frac{4A}{2}}$	1, Denominator		
	$=\frac{2\cos 7Asin2A}{\cos 7Asin2A}$	1		
	2cos 7Acos2A	1 Total = 4 marks		

	$= \tan 2A$	
2 (ii)	$\frac{\sin 9A - \sin 5A}{\cos 9A + \cos 5A} = \sqrt{3}$	
	$\tan 2A = \sqrt{3}$	1
	Principal value, $\frac{\pi}{3}$	1
	General solution $2A = n\pi + \frac{\pi}{3}$	1
	$A = \frac{n\pi}{2} + \frac{\pi}{6}$	1 Total = 4 marks
3) (i)	$\cos x - 3\sin x \equiv R\cos(x + \alpha)$	
	$R\cos\alpha = 1$	1
	$Rsin\alpha = 3$	1
	$R = \sqrt{10}$	1
	$\tan \alpha = 3$	1
	$\alpha = 1.249 \text{ rad}$	1
	$\cos x - 3\sin x \equiv \sqrt{10}\cos(x + 1.249)$	1 Total = 6 marks
3) (ii)	$\cos x - 3\sin x = \sqrt{5}$	
	$\sqrt{10}\cos(x + 1.249) = \sqrt{5}$	1
	1 240 - 1	
	$\cos(x + 1.249) = \frac{1}{\sqrt{2}}$	1
	Principal value, 0.785 rad	1
	General solution $(x + 1.249) = 2n\pi \pm 0.785$	1
	$x = 2n\pi \pm 0.785 - 1.249$	
	x = 4.2 rad, 5.8 rad	2 Total = 6 marks
4)	$x^2 + y^2 + 8x + 2y - 2 = 0 \text{Eqn 1}$	
	$\frac{x^2 + y^2 + 6x + 2y + 2}{x^2 + y^2 + 8x + 4y + 2} = 0 \text{Eqn 2}$	
	2y + 4 = 0	
	y = -2 sub. Into Eqn 1	1

	1 2				
	$x^2 + 8x - 2 = 0$	1			
	$x = \frac{-8 \pm \sqrt{72}}{2}$				
	2	1			
	$x = -4 \pm 3\sqrt{2}$	2			
	Points of intersection, $(-4 - 3\sqrt{2}, -2)$	1			
	and $(-4 + 3\sqrt{2}, -2)$	1 Total = 7 marks			
5) ()(')	r-7	1			
5) (a)(i)	$x = 7 + 5\cos\theta \to \frac{x - 7}{5} = \cos\theta$	1			
	$y = -2 + 5\sin\theta \to \frac{y+2}{5} = \sin\theta$	1			
	$\cos^2\theta + \sin^2\theta = (\frac{x-7}{5})^2 + (\frac{y+2}{5})^2$	1			
	$5^2 = (x - 7)^2 + (y + 2)^2$	1 Total = 4 marks			
5) (a)(ii)	C represents a Circle, centre $(7, -2)$, radius 5	1+1+1 Total = 3 marks			
5 (b)(i)	vector equation, $\mathbf{r} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 5 \\ 2 \end{pmatrix}$	1, for point			
	vector equation, $r = \begin{pmatrix} -3 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \end{pmatrix}$	1, for direction vector			
		Total = 2 marks			
5 (b)(ii)	cartesian equations, $\frac{x-2}{5} = \frac{y+3}{2} = \frac{z-4}{-1}$	1+1+1 Total = 3 marks			
5 (a)	$a_{2} = (5 + 62) \div (2 + 52) \div (-9 + 22) L$				
5 (c)	$\mathbf{r}_1 = (5 + 6\lambda) \mathbf{i} + (2 - 5\lambda) \mathbf{j} + (-8 + 2\lambda) \mathbf{k}$				
	$r_2 = (-4 - 8\mu) i + (-7 + \mu) j + (6 - 4\mu) k$				
	$\begin{pmatrix} 6 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} -8 \\ 1 \end{pmatrix}$	1, numerator			
	$cos\theta = \frac{\left(\frac{2}{1}\right)\left(-4\right)}{\left(\frac{6}{1}\right)\left(\frac{6}{1}\right)\left(-\frac{9}{1}\right)}$				
	$cos\theta = \frac{\begin{pmatrix} -5 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -4 \end{pmatrix}}{\begin{vmatrix} 6 \\ -5 \\ 2 \end{vmatrix} \begin{vmatrix} \begin{pmatrix} -8 \\ 1 \\ -4 \end{vmatrix}}$	1, denominator			
	48-5-8_	1, numerator			
	$=\frac{-48-5-8}{(\sqrt{65})(\sqrt{81})}$	1, denominator			
	$\theta = \cos^{-1}\left(-\frac{61}{9\sqrt{65}}\right)$	1, 55161111111111			
	$\theta = 32.8^{\circ}$ or 147.2° OR 0.6 rad or 2.6 rad	1 Total = 5 marks			

6) (i)	$\overrightarrow{AB} = \begin{pmatrix} 8 \\ -6 \\ 11 \end{pmatrix}$ $\overrightarrow{BC} = \begin{pmatrix} -4 \\ 6 \\ -10 \end{pmatrix}$	1 1 Total = 2 marks
6) (ii)	$\mathbf{n}.\overrightarrow{AB} = \begin{pmatrix} -1\\6\\4 \end{pmatrix}. \begin{pmatrix} 8\\-6\\11 \end{pmatrix} = -8 - 36 + 44 = 0$ $\mathbf{n}.\overrightarrow{BC} = \begin{pmatrix} -1\\6\\4 \end{pmatrix}. \begin{pmatrix} -4\\6\\10 \end{pmatrix} = 4 + 36 - 40 = 0$	1
	Since n is perpendicular to \overrightarrow{AB} and \overrightarrow{BC} , it is perpendicular to the plane through A , B and C .	1 Total = 3 marks
6) (iii)	Cartesian equation, $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -5 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix}$ $= 1 + 12 - 20$ i.e. $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix} = 7$ $-x + 6y + 4z = -7 \text{ OR } x - 6y - 4z = 7$	1 + 1 [LHS + RHS] 1 Total = 3 marks
6) (iv)	$r.n = a.n = d$ $r. \hat{n} = a. \hat{n} = \frac{d}{ n }$ $\hat{n} = \frac{1}{\sqrt{(-1)^2 + 6^2 + 4^2}} \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix} = \frac{1}{\sqrt{53}} \begin{pmatrix} -1 \\ 6 \\ 4 \end{pmatrix}$ $r. \hat{n} = \frac{-7}{\sqrt{53}}$ Perpendicular distance = $\left \frac{-7}{\sqrt{53}} \right $ $= \frac{7}{\sqrt{53}}$	1 1 1 Total = 3 marks