HARRISON COLLEGE

THIRD FORM MATHEMATICS

INTERNAL PROMOTION EXAMINATION 2015-2016

DURATION: 1 hour and 45 minutes

GENERAL INSTRUCTIONS TO CANDIDATES

1) This Examination Paper consists of FIVE printed pages.
2) Write your name clearly on EACH sheet of foolscap used.
3) All TWENTY questions are to be attempted.
4) Number your responses carefully and identically (including any associated parts) as they appear on the question paper. Do NOT write ANY of your responses beside each other.
5) Calculators are allowed.
6) If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle it must be given correct to one (1) decimal place, in other cases it must be given correct to three (3) significant figures.
7) The maximum mark for this Examination is $\mathbf{8 2}$.

Write on the foolscap provided the LETTER that matches your response for Questions 1 - 10 .

1) If $\boldsymbol{a} * \boldsymbol{b}=\frac{a^{2}-3}{a b}$, then $\boldsymbol{p} * 2=$
(A) $\frac{p^{2}-3}{a b}$
(B) $\frac{p^{2}-3}{2 p}$
(C) $\frac{a^{2}-p}{2 b}$
(D) $\frac{a^{2}-p}{a b}$
2) A container contains 3 red pens, 6 blue pens, 4 green pens and 7 yellow pens. A pen is drawn at random from the container. The probability that this pen is not green is
(A) $\frac{4}{5}$
(B) $\frac{1}{5}$
(C) $\frac{3}{10}$
(D) $\frac{7}{20}$
3) If p shirts cost $\$ x$ each and q socks cost $\$ y$ each, then the total cost of p shirts and q socks, in dollars is
(A) $p+x+q+y$
(B) $\frac{p x}{q y}$
(C) $\frac{p}{x}+\frac{q}{y}$
(D) $p x+q y$
4) $\frac{a^{2} b}{c^{3}} \div \frac{c^{4}}{a b^{2}}$ simplifies to
(A) $\frac{a c}{b}$
(B) $\frac{a^{2} b c^{4}}{a b^{2} c^{3}}$
(C) $\frac{a^{3} b^{3}}{c^{7}}$
(D) $\frac{a b c^{6}}{a b^{2} c^{3}}$
5) The cube of a number n is squared. This statement can be expressed as
(A) $\sqrt[3]{n^{2}}$
(B) $\left(n^{3}\right)^{2}$
(C) $\sqrt{n^{2}}$
(D) $\left(n^{3}\right)^{\frac{1}{2}}$
6) The gradient of the line parallel to $2 x=3 y+5$ is
(A) $\frac{3}{2}$
(B) $-\frac{2}{3}$
(C) 6
(D) $\frac{2}{3}$
7) Given that $C=\frac{5}{9} P-R$, then $R=$
(A) $C-\frac{5}{9} P$
(B) $\frac{5 P-9 C}{9}$
(C) $\frac{9 C}{5 P}$
(D) $\frac{5}{9} P+C$
8) Given that y is directly proportional to the cube root of the difference of u and v, this statement can be written as
(A) $y=k \times \sqrt[3]{(u-v)}$
(B) $y=k \times\left(u^{3}-v^{3}\right)$
(C) $y=k \times \frac{u}{v}$
(D) $y=k \times \frac{u^{3}}{v^{3}}$
9) Given that $f: x \rightarrow-5 x+3$, then for $f(x)=-3, x=$
(A) -12
(B) 18
(C) $\frac{6}{5}$
(D) -5
10) The value of $\cos N$ in the triangle $L M N$ is

(A) $\frac{6}{10}$
(B) $\frac{8}{10}$
(C) $\frac{0}{8}$
(D) $\frac{8}{6}$

All working MUST be shown for Questions 11-20

11) A truck is bought for $\$ 60000$. It depreciates in value at the rate of 7.5% per annum. Calculate
(i) the amount of depreciation after one year.
(ii) the value of the truck after three years.
12) s is inversely proportional to the square of t and $s=10$ when $t=2$.

Calculate
(i) the value of the constant of proportionality
(ii) the value of s when $t=8$.
13) (i) Solve for $r,\left(r-\frac{1}{4}\right) \geq \frac{1}{3}(r+1)$.
(ii) Given that $r \in Z$, state the largest value of r which satisfies the inequality in part (i). [1]
14) Solve for x and y, the simultaneous equations: $\begin{gathered}3 x=10+5 y \\ 5 x-3 y=6\end{gathered}$
15) The Cartesian plane below shows the line \boldsymbol{L}.

Determine
(i) the midpoint of line L
(ii) the gradient of line L
(iii) the equation of line \boldsymbol{L}.
(iv) the equation of the perpendicular bisector of \boldsymbol{L}.
16) Jeff is married with two children. In the year 2015, he earned $\$ 28500$.

Tax-Free Allowances per year
Personal Allowance: \$ 12000
Spouse: \$8000
Child: \$500
Tax Rates
First \$2 000: 4%
Next \$3 000: 6\%
Remainder: 8%

Using the information in the above table, for income year 2015, calculate
(i) his total tax-free allowances
(ii) his taxable income
(iii) the amount of income tax paid
(iv) his net income.
17) The masses of a sample of coconuts were recorded as shown in the table below.

Mass (g)	Number of coconuts
$335-339$	20
$340-344$	17
$345-349$	31
$350-354$	24
$355-359$	18

(i) State the class limits of the least common class.
(ii) State the class boundaries of the most common class.
(iii) Determine the probability that a coconut chosen at random is at least 454.5 g .
18) In the diagram below, (not drawn to scale), \boldsymbol{O} is the centre of the circle of radius 9 cm .

Chord $P Q$ subtends an angle $P O Q$ of 100° at the centre of the circle. Using $\pi=\frac{22}{7}$

(a) Calculate the length of the $\operatorname{arc} P R Q$.
(a) Calculate the length of $O A$.
(b) Calculate
(i) the area of the sector $P O Q R$.
(ii) the area of triangle $P O Q$
(iii) the area of the shaded segment $P Q R$ of the circle.
19) From a point N on level ground the angle of elevation of the top \boldsymbol{T} of a building is 32°.

The \boldsymbol{B} base of the building is 60 metres from \boldsymbol{N}.
(i) Draw a diagram to show ALL of the above information.
(ii) Calculate the distance $\boldsymbol{T B}$.
20) COPY and COMPLETE the table below by inserting the missing expression and or value at the rows marked (iv) b) and (iv) c), and (v) b) and (v) c).

(i)	3	$\frac{3}{2}+\left(\frac{2}{3} \times 3\right)$	$\frac{7}{2}$
(ii)	6	$3+\left(\frac{2}{3} \times 6\right)$	7
(iii)	9	$\frac{9}{2}+\left(\frac{2}{3} \times 9\right)$	$\frac{21}{2}$
(iv)	39	b) -	c)
(v)	x	b)	c)

