HARRISON COLLEGE

THIRD FORM MATHEMATICS

INTERNAL PROMOTION EXAMINATION 2015 – 2016

DURATION: 1 hour and 45 minutes

GENERAL INSTRUCTIONS TO CANDIDATES

- 1) This Examination Paper consists of FIVE printed pages.
- 2) Write your name clearly on **<u>EACH</u>** sheet of foolscap used.
- 3) All <u>TWENTY</u> questions are to be attempted.
- Number your responses carefully and <u>identically</u> (including any associated parts) as they appear on the question paper.

Do \underline{NOT} write ANY of your responses beside each other.

- **5**) Calculators are allowed.
- 6) If a numerical answer cannot be given <u>exactly</u>, and the accuracy required is not specified in the question, then in the case of an angle it <u>must</u> be given correct to **one** (1) decimal place, in other cases it <u>must</u> be given correct to <u>three (3)</u> significant figures.
- 7) The maximum mark for this Examination is 82.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

Write on the foolscap	provided the LET	TER that matches	your response for	Questions 1	- 10

1) If
$$a * b = \frac{a^2 - 3}{ab}$$
, then $p * 2 =$
(A) $\frac{p^2 - 3}{ab}$ (B) $\frac{p^2 - 3}{2p}$ (C) $\frac{a^2 - p}{2b}$ (D) $\frac{a^2 - p}{ab}$

2) A container contains 3 red pens, 6 blue pens, 4 green pens and 7 yellow pens. A pen is drawn at random from the container. The probability that this pen is not green is

(A)
$$\frac{4}{5}$$
 (B) $\frac{1}{5}$ (C) $\frac{3}{10}$ (D) $\frac{7}{20}$

3) If p shirts cost x each and q socks cost y each, then the total cost of p shirts and q socks, in dollars is

(A)
$$p + x + q + y$$
 (B) $\frac{px}{qy}$ (C) $\frac{p}{x} + \frac{q}{y}$ (D) $px + qy$

4) $\frac{a^2b}{c^3} \div \frac{c^4}{ab^2}$ simplifies to

(A)
$$\frac{ac}{b}$$
 (B) $\frac{a^2bc^4}{ab^2c^3}$ (C) $\frac{a^3b^3}{c^7}$ (D) $\frac{abc^6}{ab^2c^3}$

5) The cube of a number n is squared. This statement can be expressed as

(A)
$$\sqrt[3]{n^2}$$
 (B) $(n^3)^2$ (C) $\sqrt{n^2}$ (D) $(n^3)^{\frac{1}{2}}$

6) The gradient of the line parallel to 2x = 3y + 5 is

(A)
$$\frac{3}{2}$$
 (B) $-\frac{2}{3}$ (C) 6 (D) $\frac{2}{3}$

7) Given that $C = \frac{5}{9}P - R$, then R =

(A)
$$C - \frac{5}{9}P$$
 (B) $\frac{5P - 9C}{9}$ (C) $\frac{9C}{5P}$ (D) $\frac{5}{9}P + C$

8) Given that *y* is directly proportional to the cube root of the difference of *u* and *v*, this statement can be written as

(A)
$$y = k \times \sqrt[3]{(u-v)}$$
 (B) $y = k \times (u^3 - v^3)$ (C) $y = k \times \frac{u}{v}$ (D) $y = k \times \frac{u^3}{v^3}$
9) Given that $f: x \to -5x + 3$, then for $f(x) = -3$, $x =$

(A) - 12 (B) 18 (C)
$$\frac{6}{5}$$
 (D) - 5

10) The value of cos N in the triangle LMN is

(D) $\frac{8}{6}$

All working MUST be shown for Questions 11 – 20

11) A truck is bought for \$ 60 000. It depreciates in value at the rate of 7.5 % per annum. Calculate	
(i) the amount of depreciation after one year.	[1]
(ii) the value of the truck after three years.	[3]

- **12**) *s* is inversely proportional to the square of *t* and s = 10 when t = 2. Calculate
 - (i) the value of the constant of proportionality [2]

[2]

- (ii) the value of *s* when t = 8.
- **13)** (i) Solve for $r, (r \frac{1}{4}) \ge \frac{1}{3}(r+1)$. [5]

(ii) Given that $r \in \mathbb{Z}$, state the largest value of r which satisfies the inequality in part (i). [1]

14) Solve for x and y, the simultaneous equations: 3x = 10 + 5y5x - 3y = 6[6]

15) The Cartesian plane below shows the line *L*.

Determine

(i) the midpoint of line <i>L</i>	[2]
(ii) the gradient of line <i>L</i>	[2]
(iii) the equation of line <i>L</i> .	[2]
(iv) the equation of the perpendicular bisector of L .	[4]

16) Jeff is married with two children. In the year 2015, he earned \$ 28 500.

Tax-Free Allowances per year
Personal Allowance: \$ 12 000
Spouse: \$ 8 000
Child: \$500
Tax Rates
First \$2 000: 4 %
Next \$3 000: 6 %
Remainder: 8 %

Using the information in the above table, for income year 2015, calculate

(i) his total tax-free allowances	[4]
(ii) his taxable income	[2]
(iii) the amount of income tax paid	[4]
(iv) his net income.	[2]

17) The masses of a sample of coconuts were recorded as shown in the table below.

Mass (g)	Number of coconuts
335 - 339	20
340 - 344	17
345 - 349	31
350 - 354	24
355 - 359	18

(i) State the class limits of the least common class. [2]

(ii) State the class boundaries of the most common class. [2]

(iii) Determine the probability that a coconut chosen at random is at least 454.5 g. [2]

18) In the diagram below, (not drawn to scale), *O* is the centre of the circle of radius 9 cm.

Chord PQ subtends an angle POQ of 100^o at the centre of the circle. Using $\pi = \frac{22}{7}$

(a) Calculate the length of the arc <i>PRQ</i>.(a) Calculate the length of <i>OA</i>.	[2] [3]
(b) Calculate	
(i) the area of the sector <i>POQR</i> .	[2]
(ii) the area of triangle POQ	[3]
(iii) the area of the shaded segment PQR of the circle.	[2]

19) From a point *N* on level ground the angle of elevation of the top *T* of a building is 32° .

The B base of the building is 60 metres from N.

(i) Draw a diagram to show <u>ALL</u> of the above information. [5]

[3]

(ii) Calculate the distance *TB*.

20) <u>COPY</u> and <u>COMPLETE</u> the table below by inserting the missing expression and or value at the rows marked (iv) b) and (iv) c), and (v) b) and (v) c). [4]

(i)	3	$\frac{3}{2} + \left(\frac{2}{3} \times 3\right)$	$\frac{7}{2}$
(ii)	6	$3 + \left(\frac{2}{3} \times 6\right)$	7
(iii)	9	$\frac{9}{2} + \left(\frac{2}{3} \times 9\right)$	$\frac{21}{2}$
(iv)	39	b)	c)
(v)	x	b)	c)

End of Examination