HARRISON COLLEGE

END OF YEAR EXAMINATION

2022

THIRD FORM MATHEMATICS

DURATION: 1 HOUR and FIFTEEN minutes

INSTRUCTIONS TO CANDIDATES

1) ALL QUESTIONS ARE TO BE ANSWERED ON THIS QUESTION PAPER. THERE IS ONE EXTRA PAGE AT THE END OF THIS PAPER FOR ADDITIONAL WORKING.

- 2) This Examination Paper consists of **EIGHT** printed pages and <u>ONE EXTRA</u> page for **additional working**.
- 3) All FOURTEEN questions are to be attempted.
- **4**) Number your responses carefully and <u>identically</u> (including any associated parts) as they appear on the question paper.
- 5) Calculators are ALLOWED.
- 6) If a numerical answer cannot be given <u>exactly</u>, and the accuracy required is not specified in the question, then in the case of an angle it <u>must</u> be given correct to **one** (1) decimal place, in other cases it <u>must</u> be given correct to <u>three (3)</u> <u>significant figures</u>.
- 7) The maximum mark for this Examination is **55**.
- 8) Write your NAME and FORM below.

NAME OF STUDENT: ______ FORM: _____

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

LIST OF FORMULAE

Volume of Prism	V = Ah where A is the area of a cross-section and h is the perpendicular length.		
Volume of Cylinder	$V = \pi r^2 h$ where <i>r</i> is the radius of the base and <i>h</i> is the perpendicular height.		
Volume of a right pyramid	$V = \frac{1}{3}Ah$ where A is the area of the base and h is the perpendicular height.		
Circumference	$C = 2\pi r$ where <i>r</i> is the radius of the circle.		
Arc length	$S = \frac{\theta}{360} \times 2\pi r$ where θ is the angle subtended by the arc, measured in degrees.		
Area of a circle	$A = \pi r^2$ where <i>r</i> is the radius of the circle.		
Area of a sector	$A = \frac{\theta}{360} \times \pi r^2$ where θ is the angle of the sector, measured in degrees.		
Area of Trapezium	$A = \frac{1}{2}(a+b)h$ where <i>a</i> and <i>b</i> are the lengths of the parallel sides and <i>h</i> is the perpendicular distance between the parallel sides.		
Trigonometric ratios $\sin \theta =$	$= \frac{opposite \ side}{hypotenuse}$ $adjacent \ side$ $Opposite$ $Hypotenuse$ $Hypotenuse$		

$$\cos \theta = \frac{adjacent \quad side}{hypotenuse}$$

$$\tan \theta = \frac{opposite \quad side}{adjacent \quad side}$$
Opposite
$$\operatorname{Adjacent}$$

Area of
$$\Delta = \frac{1}{2}bh$$
 where *b* is the length of the base and *h* is

the perpendicular height.

$$C \xrightarrow{a \qquad \qquad h \qquad c \qquad \qquad h \qquad c \qquad \qquad A$$

Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$ <u>**CIRCLE</u>** the <u>**LETTER**</u> that matches your response for Questions 1) to 7).</u>

1) If x * y is defined to be $x \div 2y$, then -3 * a

(A) $-3 \div 2a$ (B) $2a \div (-3)$ (C) $3 \div 2a$ (D) $-3 \div a$

2) The diagram below illustrates the graph of

The triangle *PQR* above is right-angled at *Q*. Angle *PRQ* = 60° and *QR* = 5 cm. The length of *PQ*, in cm, is

(A)
$$\frac{5}{\tan 60^{\circ}}$$
 (B) $\frac{5}{\cos 60^{\circ}}$ (C) $5\cos 60^{\circ}$ (D) $5\tan 60^{\circ}$

[Total: 7]

<u>All working MUST be clearly shown for Questions 8 to 14 in</u> <u>the space provided after each Question</u>

8) \$ 12 000 in savings bonds are invested for 3 years at the rate of 2 % per annum compounded interest. Calculate

(i)	the value of the investment after one year.	[2]

(ii) the amount of interest received at the end of the investment period. [4]

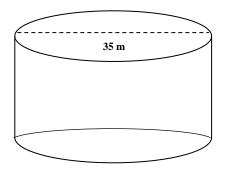
9) Simplify fully $\left(k^{\frac{1}{3}}\right)^2 \times k^3$.

[3]

- 10) y is inversely proportional to the square of x, and y = 5 when x = 3. Using this information
 - (i) Write an **equation** involving *y* and *x*.
 - (ii) Calculate, **as a fraction**, the value of y when x = 7. [4]

11) Solve for x and y, the simultaneous equations: $\begin{aligned} 7x - 4y &= 37 \\ 6x + 3y &= 51 \end{aligned}$ [5]

[2]


12) A group of students each recorded the time it took to wait in line in order to collect their lunch from a school cafeteria. The time, to the nearest minute, is recorded below:

Time in minutes	Number of Students		
1 – 5	5		
6 - 10	2		
11 – 15	4		
16 - 20	8		
21 - 25	3		
26 - 30	3		

(i)	State the modal class.	[1]
(ii)	Calculate the mean wait time.	[9]
(iii)	Determine the probability that a randomly chosen student waited at least	
	11 minutes.	[2]

- 13) An iron stake is driven into the ground at a point *A* on the horizontal ground and is 15metres away from the base, *B*, of a vertical cell phone tower, *BT*, which is 20 metres high.
 - (i) Sketch a <u>fully labelled</u> diagram to show <u>ALL</u> of the above information. [5]
 - (ii) Calculate the angle of elevation of the top, T, of the tower from the point A. [3]

14) The figure below, <u>not drawn to scale</u>, represents a storage tank in the form of a cylinder. The diameter of the tank is 35 metres and its volume is 11 550 cubic metres.

Using $\pi = \frac{22}{7}$, calculate the **EXACT** value of

(i)	the height of the storage tank.	[4]
(ii)	the total surface area of the storage tank.	[4]

EXTRA PAGE

If you use this extra page, you MUST write the question number clearly in the box provided.

Question No.			-
--------------	--	--	---