HARRISON COLLEGE

END OF YEAR EXAMINATION 2017 THIRD YEAR MATHEMATICS DURATION: 1 Hour and Forty-Five Minutes

GENERAL INSTRUCTIONS TO CANDIDATES

- 1) This Examination Paper consists of SEVEN printed pages.
- 2) Write your name clearly on EACH sheet of foolscap used.
- 3) All TWENTY questions are to be attempted.
- Number your responses carefully and <u>identically</u> (including any associated parts) as they appear on the question paper.

Do NOT write ANY of your responses beside each other.

- 5) Calculators are allowed.
- 6) If a numerical answer cannot be given <u>exactly</u>, and the accuracy required is not specified in the question, then in the case of an angle it <u>must</u> be given correct to **one (1)** decimal place, in other cases it <u>must</u> be given correct to <u>three (3)</u> <u>significant figures</u>.
- 7) The maximum mark for this Examination is 78.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

LIST OF FORMULAE

Volume of Prism V = Ah where A is the area of a cross-section and h is the perpendicular length. Volume of Cylinder $V = \pi r^2 h$ where r is the radius of the base and h is the perpendicular height. $V = \frac{1}{2}Ah$ where A is the area of the base and h is the Volume of a right pyramid perpendicular height. Circumference $C = 2\pi r$ where r is the radius of the circle. $S = \frac{\theta}{360} \times 2\pi r$ where θ is the angle subtended by the arc, Arc length measured in degrees. Area of a circle $A = \pi r^2$ where r is the radius of the circle. $A = \frac{\theta}{360} \times \pi r^2$ where θ is the angle of the sector, measured Area of a sector in degrees. $A = \frac{1}{2}(a+b)h$ where a and b are the lengths of the parallel Area of Trapezium si les and h is the perpendicular distance between the parallel si les. Trigonometric ratios $\sin \theta = \frac{opposite \ side}{1}$ Hypotenuse hypotenuse Opposite $\cos \theta = \frac{c \, djocent \quad side}{hypotenuse}$ A Adjacent $\tan \theta = \frac{opposite}{adjacent} \quad side$ Area of $\Delta = \frac{1}{2}bh$ where b is the length of the base and h is Area of a triangle the perpendicular height. B Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$

WRITE ON THE FOOLSCAP PROVIDED the LETTER that matches your response for Questions 1) to 10).

1) 4x - 3(x + 5) =

(A) 7*x* – 15

(B)
$$x + 15$$

(C)
$$-7x + 15$$
 (D) $x - 15$

 $2) \begin{bmatrix} domain \\ 3 \\ 5 \\ 7 \\ 9 \end{bmatrix} \xrightarrow{range} 10 \\ 26 \\ 50 \\ 82 \end{bmatrix}$

The diagram above represents the mapping

(A) $x \to 3x+1$ (B) $x \to x^2+1$ (C) $x \to x+2$ (D) $x \to x^2+10$

3) The surface area of a sphere is

(A) $2\pi r (r + h)$ (B) $2\pi h$ (C) $4\pi r^2$ (D) $2\pi r h$

4)
$$\frac{3m}{5r} + \frac{4n}{7s} =$$

(A) $\frac{3m+4n}{5r+7s}$ (B) $\frac{21ms+20nr}{35rs}$ (C) $\frac{3mn}{21rs}$ (D) $\frac{12mn}{21rs}$

5) If x and y are both integers, then $2(x - y)^2$ means

(A) two times the difference of their squares

(B) four times their difference

(C) two times the x squared minus y squared.

(D) two times the square of their difference

6) The gradient of the line perpendicular to 3x - 2y = 5 is

(A)
$$-\frac{2}{3}$$
 (B) $\frac{3}{2}$ (C) -2 (D) 3

7) If $p \nabla q = p^2 - 3q$, then $5 \nabla 2 =$ (A) - 11 (B) 19 (C) 21 (D) 25

8) If
$$\frac{5x-3}{2} = 6$$
, then $x =$
(A) 5 (B) 3 (C) 17 (D) 25

9) A plane is heading on a bearing 0.55°, and changes course in a clockwise direction to 125°. The angle through which the plane turns is

The triangle *ABC* above is right-angled at *B*. Angle $ACB = 30^{\circ}$ and BC = 25 cm. The length of *AB*, in cm, is

(A) 25 sin 30⁰ (B) $\frac{25}{\sin 30^0}$ (C) $\frac{25}{\cos 30^0}$ (D) 25 cos 30⁰

[Total: 10]

All working MUST be clearly shown for Questions 11-21

11) A cottage is bought for \$ 160 000. It appreciates in value at the rate of 2.75 % per

20

annum. Calculate		
(i) the amount of appreciation after one year.		[2]
(ii) the value of the cottage after three years.		[3]
12) Simplify fully $\left(\chi^{\frac{1}{2}}\right)^3 \times \sqrt{\chi^9}$.		[3]
13) r is directly proportional to the cube root of s aCalculate	and $r = 10$ when $s = \frac{1}{8}$.	
(i) the value of the constant of proportionality		[3]
(ii) the value of s when $r = 12$.		[3]
14) (a) Make x the subject of $y = \frac{p+x}{1-px}$		[4]
(b) A rectangular room is 6 metres longer than	its width <i>x</i> .	
Its perimeter must not exceed 126 metres.		
(i) write an inequality in x to represent this is	nformation.	[1]
(ii) determine the greatest length the room m	hay have.	[4]
15) Solve for p and q , the simultaneous equations:	3p - 4q = 11 5p + 9q = -13	[5]
16) (i) Find the equation of the straight line joining	ing the points $(-2, 1)$ and $(3, 4)$.	[3]
(ii) Determine the equation of the line passing	through $(3, 4)$ which is perpendicular to	
the line in (i).		[3]
(iii) Calculate the distance between the point (-	-2, 1) and the point where the line in (ii)	
meets the y-axis.	· ·	[3]

17)

The <u>closed</u> cylinder above (not drawn to scale) is of length 14 cm. The circular ends have a circumference 35 cm. Calculate, giving your answer in terms of π

(i)	the radius of the cylinder.	[2]
(ii)	the total surface area of the cylinder.	[3]
(iii)	the capacity of the cylinder.	[5]

18)

In triangle *LMN* above (not drawn to scale) MN = 17 cm. *LP* is perpendicular to *MN*. *LP* = 12 cm and angle *PLN* = angle *PNL*.

(i) State the length of *PN*. Give a reason for your answer.
(ii) Calculate the length of *LM*.
(iii) Calculate the size of angle *LMP*.

[2]

[2]

[2]

19) For this question use $\pi = 3.14$. In the diagram below, (not drawn to scale), O is the centre of the circle of radius 9 cm. Chord *AB* is 13.8 cm and angle $AOB = 100^{\circ}$.

(a) Calculate the length of the arc ACB.	[2]
(b) Calculate	
(i) the area of the sector <i>OACB</i> .	[2]
(ii) the area of triangle OAB .	[4]
(iii) the area of the shaded segment <i>ABC</i> of the circle.	[2]

20) <u>COPY</u> and <u>COMPLETE</u> the table below by inserting the missing expression at

the rows marked (ii) and (iii).

(i)	а	$\frac{a}{2} + \left(\frac{1}{3} \times 2\right)$	$\frac{3a+4}{6}$
(ii)	ab	$\frac{ab}{2} + \left(\frac{b}{3} \times 2\right)$	
(iii)	abc		$\frac{3abc + 4bc}{6}$

[5]

End of Examination