HARRISON COLLEGE

END OIF YEAR EXAMINATION 2017

THIIRD YEAR MATHEMATICS
DURATION: 1 Hour and Forty-Five Minutes

GENERAL INSTRUCTIONS TO CANDIDATES

1) This Examination Paper consists of SEVEN printed pages.
2) Write your name clearly on $\mathbf{E A C H}$ sheet of foolscap used.
3) All TWENTY questiors are to be attempted.
4) Number your responses carefully and identically (including any associated parts) as they arpear on the question paper.

Do NOT write ANY of your responses beside each other.
5) Calculators are allowed
6) If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle it must be given correct to one (1) decimal place, in other cases it must be given correct to three (3) significant figures.
7) The maximum mark for this Examination is 78.

LIST OF FORMULAE

Volume of Prism . $\quad V=A h$ where A is the area of a cross-section and h is the perpendicular length.

Volume of Cylinder $\quad V=\pi r^{2} h$ where r is the radius of the base and h is the perpendicular height.

Volume of a right pyramid $\quad V=\frac{1}{3} A h$ where A is the area of the base and h is the perpendicular height.

Circumference
$C=2 \pi r$ where r is the radius of the circle.
Arc length
$S=\frac{\theta}{360} \times 2 \pi r$ where θ is the angle subtended by the arc, measured in degrees.

Area of a circle
$A=\pi r^{2}$ where r is the radius of the circle.
Area of a sector
$A=\frac{\theta}{360} \times \pi r^{2}$ where θ is the angle of the sector, measured in degrees.

Area of Trapezium $A=\frac{1}{2}(a+b) h$ where a and b are the lengths of the parallel sides and h is the perpendicular distance between the parallel sides.

Trigonometric ratios $\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}$

$$
\cos \theta=\frac{\text { cdiacent side }}{\text { hypotenuse }}
$$

Opposite

$$
\tan \boldsymbol{\theta}=\frac{\text { opposite }}{} \quad \text { side }
$$

Adjacent

Area of a triangle Area of $\Delta=\frac{1}{2} b h$ where b is the length of the base and h is the perpeadicalar height.

$$
\text { Area of } \angle A B C=\sqrt{s(s-a)(s-b)(s-c)}
$$

 where $s=\frac{a+b+c}{2}$

WRITE ON THE FOOLSCAP PROVIDED the LETTER that matches your response for: Questions 1) to 10).

1) $4 x-3(x+5)=$
(A) $7 x-15$
(B) $x+15$
(C) $-7 x+15$
(D) $x-15$
2)

The diagram above represents the mapping
(A) $x \rightarrow 3 x+1$
(B) $x \rightarrow x^{2}+1$
(C) $x \rightarrow x+2$
(D) $x \rightarrow x^{2}+10$
3) The surface area of a sphere is
(A) $2 \pi r(r+h)$
B) $2 \pi h$
(C) $4 \pi r^{2}$
(D) $2 \pi r h$
4) $\frac{3 m}{5 r}+\frac{4 n}{7 s}=$
(A) $\frac{3 m+4 n}{5 r+7 s}$
(B) $\frac{21 m s+20 n r}{35 r s}$
(C) $\frac{3 m n}{21 r s}$
(D) $\frac{12 m n}{21 r s}$
5) If x and y are both integers, ther $2(x-y)^{2}$ means
(A) two times the difference of their squares
(B) four times their difference
(C) two times the x squared minus y squared.
(D) two times the square of their difference
6) The gradient of the line perper cticular to $3 x-2 y=5$ is
(A) $-\frac{2}{3}$
(B) $\frac{3}{2}$
(C) -2
(D) 3
7) If $p \nabla q=p^{2}-3 q$, then $5 \nabla 2=$
(A) -11
(B) 19
(C) 21
(D) 25
8) If $\frac{5 x-3}{2}=6$, then $x=$
(A) 5
(B) 3
(C) 17
(D) 25
9) A plane is heading on a bearing 0.55°, and changes course in a clockwise direction to 125°. The angle through which the plane turns is
(A) 70°
(B) 180°
(C) 235°
(D) 90°
10)

The triangle $\boldsymbol{A} \boldsymbol{B} \boldsymbol{C}$ above is right-angled at \boldsymbol{B}. Angle $\boldsymbol{A} \boldsymbol{C B}=30^{\circ}$ and $\boldsymbol{B C}=25 \mathrm{~cm}$.
The length of $A B$, in cm , is
(A) $25 \sin 30^{\circ}$
(B) $\frac{25}{\sin 30^{\circ}}$
(C) $\frac{25}{\cos 30^{\circ}}$
(D) $25 \cos 30^{\circ}$

All working MUST be clearly shown for Questions 11 - 21

11) A cottage is bought for $\$ 160000$. It appreciates in value at the rate of 2.75% per annum. Calculate
(i) the amount of appreciation after one year.
(ii) the value of the cottage afer three years.
12) Simplify fully $\left(x^{\frac{1}{2}}\right)^{3} \times \sqrt{x^{9}}$.
13) r is directly proportional to the cube root of s and $r=10$ when $s=\frac{1}{8}$.

Calculate
(i) the value of the constant of proportionality
(ii) the value of s when $r=12$.
14) (a) Make x the subject of $y=\frac{p+x}{1-p x}$
(b) A rectangular room is 6 metres longer than its width x.

Its perimeter must not exceed 126 metres.
(i) write an inequality ir x to represent this information.
(ii) determine the greatest length the room may have.
15) Solve for p and q, the simviltanzous equations: $\begin{aligned} & 3 p-4 q=11 \\ & 5 p+9 q=-13\end{aligned}$
16) (i) Find the equation of the straight line joining the points $(-2,1)$ and $(3,4)$.
(ii) Determine the equation of the line passing through $(3,4)$ which is perpendicular to the line in (i).
(iii) Calculate the distance between the point $(-2,1)$ and the point where the line in (ii) meets the y-axis.
17)

The closed cylinder above (not drawn to scale) is of length 14 cm . The circular ends have a circumference 35 cm . Calculate, giving your answer in terms of π
(i) the radius of the cylinder.
(ii) the total surface area of the cylinder.
(iii) the capacity of the cylinder.
18)

In triangle $L M N$ above (not drawn to scale) $M N=17 \mathrm{~cm} . L P$ is perpendicular to $M N$. $\boldsymbol{L P}=12 \mathrm{~cm}$ and angle $\boldsymbol{P} \boldsymbol{L} \boldsymbol{N}^{\top}=$ angle $\boldsymbol{P} \boldsymbol{N L}$.
(i) State the length of $\boldsymbol{P N}$. Give a reason for your answer.
(ii) Calculate the length of $L M$.
(iii) Calculate the size of angle LMP.
19) For this question use $\pi=3.14$. In the diagram below, (not drawn to scale), \boldsymbol{O} is the centre of the circle of radius 9 cm . Ciord $A B$ is 13.8 cm and angle $A O B=100^{\circ}$.

(a) Calculate the length of the arc $A C B$.
(b) Calculate
(i) the area of the sector CACB.
(ii) the area of triangle $O A B$.
(iii) the area of the shaded segment $A B C$ of the circle.
20) COPY and COMPLETE the table below by inserting the missing expression at the rows marked (ii) and (iii).

(i)	a	$\frac{a}{2}+\left(\frac{1}{3} \times 2\right)$	$\frac{3 a+4}{6}$
(ii)	$a b$	$\frac{a b}{2}+\left(\frac{b}{3} \times 2\right)$	
(iii)	$a b c$		$\frac{3 a b c+4 b c}{6}$

End of Examination

