P. CADOGAN
 Harrison College

Promotion Examination 2010
Time $1 \frac{3}{4}$ hours
180 Copies

INSTRUCTIONS

This question paper consists of FOUR printed pages.
Write your name clearly on EACH sheet of paper used.
Number your answers carefully and do NOT do questions beside one another.
All of the questions are to be attempted.
Calculators are allowed.
Graph paper is available if required.
If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle it should be given to one (1) decimal place, in other cases it should be given correct to three (3) significant figures.

Write on your foolscap the LETTER that matches your response for Questions 1-5. All working MUST be shown for questions 6-18.

1. The number 0.02856 correct to 3 significant figures is:
(A) 0.028
(B) 0.029
(C) 0.0286
(D) 0.0285
2. If f is a function such that $f(x)=2 x+1$, and $f(x)=7$, which of the following pairs satisfy the function?
(A) $(-3,-7)$
(B) $(-6,7)$
(C) $(3,7)$
(D) $(-3,7)$
3. If $a * b$ means $(a-2 b)^{2}$, then $1 * 2$ is:
(A) -9
B) -1
(C) 1
(D) 9
4. Given that k is a constant, and that p is directly proportional to the reciprocal of q then:
(A) $p=\frac{k}{q}$
(B$) q=k p$
(C) $p=\frac{q}{k}$
(D) $p=k q$
5. Given that $m \in N, c \in N$, which one of the following lines passes through the origin In the Cartesian plane:
(A) $y=m x+c$
(B) $y=m x$
(C) $y=c$
(D) $y=m$
6. Calculate the simple interest on $\$ 1875$, invested for 30 months at 3% per annum.
7. The water department charges $\$ 6.50$ per month for the meter rent, $\$ 25$ for the first 150 cubic metres of water used and $\$ 2.50$ for each additional 10 cubic metres used.

Calculate the total bill for the use of 270 cubic metres of water in one month.
8. The Thomas family bought a house for $\$ 340000$. It appreciates in value by $8 \frac{1}{4} \%$ per year. Calculate the value of the house after 2 years.
9. Simplify the following:
(a) $3 m^{2} n^{3} \times 4 m n^{2}$
(b) $9 a^{-5} \times \frac{2}{3} a^{6}$
10. Make x the subject of $x(a-b)=b(c-x)$
11. Solve for x, and represent the solution on a number line

$$
\begin{equation*}
4(x-2) \geq 5 x+1 \tag{6}
\end{equation*}
$$

12. Solve the pair of simultaneous equations: $\frac{3}{4} x+\frac{1}{2} y=8$

$$
\frac{1}{2} x-\frac{1}{2} y=2
$$

13. The radius of the circular base of a cylinder is $7 x \mathrm{~cm}$. Its height is $(x-2) \mathrm{cm}$.
(i) Sketch a diagram to show the above information
(ii) Taking $\pi=\frac{22}{7}$, find in terms of x, an expression for the volume of the cylinder. (NOTE: Do not use $3.14,3.142 \mathrm{etc}$)
14. (a) Using ruler and compasses ONLY, construct and label quadrilateral $A B C D$ such that $A B=5 \mathrm{~cm}, A B C=90^{\circ}, B C=6 \mathrm{~cm}, \hat{B A D}=60^{\circ}$ and $A D=7 \mathrm{~cm}$.
(b) Measure and state the length of $C D$.
(Full marks will not be awarded unless all construction lines and arcs are clearly shown).
15. (i) Copy and complete the table below for the function $y=3-2 x$ for $-2 \leq x \leq 4$.

x	-2	-1	0	1	2	3	4
y	7		3				

(ii) Using a scale of 1 cm to represent 1 unit on each axis, draw the graph of the function $y=3-2 x$ for $-2 \leq x \leq 4$.
(iii) On your graph
(a) mark the x-intercept with X, and circle it.
(b) state the coordinates of the x-intercept.
(c) mark the y-intercept with Y, and circle it.
(d) state the coordinates of the y-intercept.
(iv) Find
(a) the length of the line segment $X Y$.
(b) the mid-point of the line segment $X Y$.
(c) the gradient of the line segment $X Y$.
(d) the equation of the perpendicular bisector of the line segment $X Y$.
16.

The solid figure $P Q R S T U$ above, represents a wooden wedge. $T U=6 \mathrm{~cm}$, $U P=9 \mathrm{~cm}$, and $P Q=15 \mathrm{~cm} . S R$ and $T U$ are perpendicular to the plane $P Q R U$.

Calculate:
(i) the length of $P T$ in centimetres
(ii) the surface area of the wedge in square centimetres
(iii) the size of angle TPU.
17. The heights of a group of students in Form 3 are shown in the table below.

Height (cm)	Frequency (\boldsymbol{f})
$150-154$	11
$155-159$	11
$160-164$	13
$165-169$	9
$170-174$	6

(i) How many students are in the group?
(ii) State the modal class.
(iii) By finding the mid-interval value, calculate the mean height of the students.
(iv) Calculate the probability that a student chosen at random is AT LEAST
164.5 cm tall.
18. Two lighthouses, \boldsymbol{P} and \boldsymbol{R}, and a telecommunications antenna with base \boldsymbol{Q} and top S are illustrated below.

The angles of depression of the lighthouses \boldsymbol{P} and \boldsymbol{R} from the antenna are 60° and 45° respectively.
(i) Copy the diagram and insert the angles of depression.
(ii) If the antenna is 150 m high, find the distance between the lighthouses.

