For questions 1 to 5 write the letter which corresponds your answer.

1. The distance of the earth from the sun is approximately 150000000 km . What is this distance in standard form?

A	$1.5 \times 10^{5} \mathrm{~km}$	B
C	$1.5 \times 10^{7} \mathrm{~km}$	D
$1.5 \times 10^{6} \mathrm{~km}$		
$1.5 \times 10^{8} \mathrm{~km}$		

2. A woman's basic rate of pay is $\$ 12$ per hour for a 40 hour week. Overtime is paid at the rate of time-and-a half. What is the woman's weekly wage if she worked 46 hours in that particular week?
$\mathrm{A} \quad \$ 552 \quad$ B $\quad \$ 480$

C $\$ 660$
(D) $\$ 588$
3. If $2(3-y) \leq 4 y-12$, then
(A) $y \geq 3$
B $\quad y \geq 1$
C $\quad y \leq-3$
D $\quad y \geq-1$
4. Given that $U=\{a, b, c, d, e, f\}, A=\{a, b, c\}, B=\{b, c, d, e\}$, what is $A^{\prime} \cap B$?
A $\{f\}$
B $\quad\{d, e, f\}$
(C) $\{d, e\}$
D $\quad\{d\}$
5. If $\frac{x-1}{3}+2=\frac{x+5}{4}$, then the value of x is
A 8
B 3
(C) -5

D $\quad-30$
6. Find the value of the following, giving your answers in standard form:
a) $6.12 \times 10^{3}+3.995 \times 10^{2}$
b) $\left(3.5 \times 10^{-3}\right) \div\left(7 \times 10^{-5}\right)$
a) $6120+399.5=6519.5=6.5195 \times 10^{3}$
b) $\frac{0.0035}{0.00007}=50=5.0 \times 10^{1}$
7. A large map of a certain country hangs on the wall of a room. The scale on the map is $1: 10000$.
a) What is the actual distance, in metres, between two villages that are 2 cm apart?
b) The actual distance between two towns is 14 km . What is the distance on the map that represents this?
a)

cm	cm
$1: 10000$	
$\times 2$	$\times 2$

$2 \mathrm{~cm} \quad 20000 \mathrm{~cm}=200 \mathrm{~m}$
b)

cm		
$1: 10000$	cm	km
$\times 140$		$\times 140$
140 cm		14 km

8. Mr. Ward earned $\$ 300$ in simple interest when he invested $\$ 4000$ for 3 years in a savings account with The National Bank of Bim. What is the bank's annual rate of interest?

$$
\begin{array}{lr}
I=\$ 300 & \$ 40 \varnothing 0 \times \frac{R}{100} \times 3=\$ 300 \\
P=\$ 4000 & \$ 120 R=\$ 300 \\
t=3 & R=\frac{300}{120}=2.5 \\
R=? &
\end{array}
$$

9. Remove the brackets and simplify:
a) $3(x+y)+2(x-y)$
b) $x(2 y-3 z)-y(4 x-5 z)$
a)

$$
\begin{aligned}
& 3(x+y)+2(x-y) \\
= & 3 x+3 y+2 x-2 y \\
= & 5 x+y
\end{aligned}
$$

b)

$$
\begin{aligned}
& x(2 y-3 z)-y(4 x-5 z) \\
& =2 x y-3 x z-4 x y+5 y z \\
& =-2 x y-3 x z+5 y z
\end{aligned}
$$

10. Solve the following equations:
a) $3(x-3)+5=8-x$
b) $\frac{x}{3}+\frac{x}{5}=2$
a)

$$
\begin{gathered}
3(x-3)+5=8-x \\
3 x-9+5=8-x \\
3 x-4=8-x \\
4 x=12 \\
x=3
\end{gathered}
$$

b)

$$
\begin{aligned}
\frac{x}{3}+\frac{x}{5} & =2 \\
5 x+3 x & =30 \\
8 x & =30 \\
x & =\frac{30}{8} \\
x & =\frac{15}{4}
\end{aligned}
$$

11. Make x the subject of the following equations:
a) $4 y=27+3 x$
b) $12 a+3 x b=14 q$
c) $Z=A(3 x+2 y)$
a)

$$
\begin{aligned}
& 4 y=27+3 x \\
& 4 y-27=3 x \\
& \frac{4 y-27}{3}=x
\end{aligned}
$$

b)

$$
\begin{aligned}
12 a+3 x b & =14 q \\
3 x b & =14 q-12 a \\
x & =\frac{14 q-12 a}{3 b}
\end{aligned}
$$

c)

$$
\begin{aligned}
& z=A(3 x+2 y) \\
& z=3 A x+2 A y \\
& z-2 A y=3 A x \\
& z-2 A y=x \\
& 3 A
\end{aligned}
$$

12. Write down the $7^{\text {th }}$ and $8^{\text {th }}$ terms in the following sequences.
a) $1,4,9,16, \ldots \quad 49,64$
b) $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, \ldots, 8,16$
13. In a check of 100 vehicles, the police found that 30 vehicles had defective lights, 17 had defective brakes and 63 had no defect at all.
Letting x represent the number of vehicles with both defective lights and defective brakes,
a) Draw a Venn diagram to represent this information.
b) Calculate the value of x.
c) Determine the number of vehicles with only faulty lights.
a)

b)

$$
\begin{aligned}
30-x+x+17-x+63 & =100 \\
110-x & =100 \\
10 & =x
\end{aligned}
$$

c) $30-x=30-10=20$
14. Find the values of x and y in the diagram below.

By Pythagoras' Theorem

$$
\begin{aligned}
12^{2}+x^{2} & =13^{2} \\
144+x^{2} & =169 \\
x^{2} & =169-144 \\
x^{2} & =25 \\
x & =5 \\
y^{2}+y^{2} & =5^{2} \\
y^{2}+16 & =25 \\
y^{2} & =25-16 \\
y^{2} & =9 \\
y & =3
\end{aligned}
$$

15. The interior angles of a pentagon are $x^{0}, x^{0}, 2 x^{0}, 3 x^{0}$ and $3 x^{0}$. Calculate the value of x.

Sum of angles in pentagon $=540^{\circ}$

$$
\begin{aligned}
x+x+2 x+3 x+3 x & =540 \\
10 x & =540 \\
x & =54
\end{aligned}
$$

16. Using a ruler, a pencil and a pair of compasses, construct a triangle $P Q R$ in which $P Q=8 \mathrm{~cm}$, $P R=6 \mathrm{~cm}$ and angle $P=60^{\circ}$.

Measure and state
i) the length of $R Q$
ii) the size of the angle at Q .

