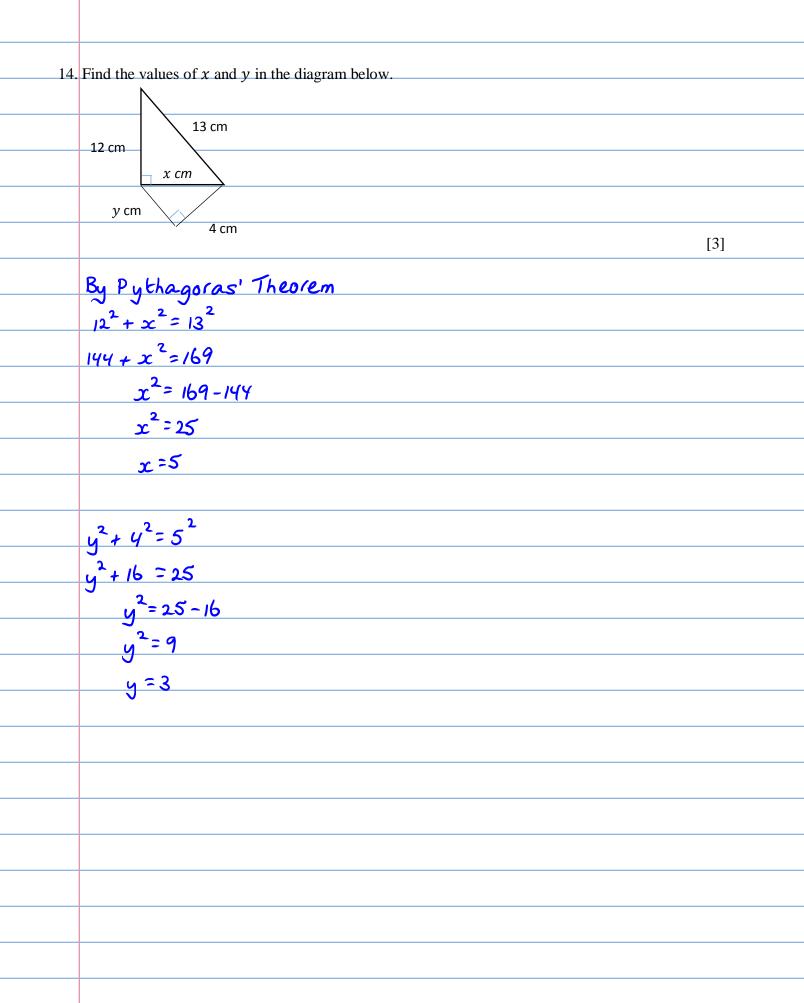
1. The	distance of the earth from the s	sun is approximately 1	50 000 000 km. What is thi	s distance in
stan	dard form?			
A	1.5×10^{5} km	B	1.5×10^{6} km	
C	$1.5 \times 10^{7} \text{km}$	D	1.5×10^{8} km	
2. A w	oman's basic rate of pay is \$12	per hour for a 40 hour	week. Overtime is paid at t	he rate of time-
and-	a half. What is the woman's we	eekly wage if she work	ed 46 hours in that particula	ar week?
A	\$552	В	\$480	
C	\$660	D	\$588	
	$(3-y) \le 4y - 12$, then			
A	$y \ge 3$ $-y \le -3$	В	$y \ge 1$	
C	$y \leq -3$	D	$y \ge -1$	
	u = f + f = (a + b + a + b + c + b) + c = (a + b + a + b + b) + c = (a + b + a + b + b) + c = (a + b + a + b) + c = (a + b + a + b + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b + a + b) + c = (a + b + a + b + a + b + a + b + a + b) + (a + b + a + b + a + b + a + b + a + b) + (a + b + a + b + a + b + a + b + a + b) + (a + b + a + b + a + b + a + b + a + b) + (a + b + a + b + a + b + a + b + a + b) + (a + b + a + b + a + b + a + b + a + b) + (a + b + a + b + a + b + a + b + a + b + a + b + a + a	-(a b a) D - (b a d b)	a) what is $A' \cap B^2$	
4. Give	(f)	$- \{u, v, c\}, v = \{v, c, u\}$	$\{d, e\}$	
A	en that $U = \{a, b, c, d, e, f\}, A = $ { f } { d, e }	D	$\{a, e, j\}$	
0	{ <i>u</i> , <i>e</i> }	D	{ u }	
5. If $\frac{x}{3}$	$\frac{1}{4} + 2 = \frac{x+5}{4}$, then the value of	x is		
A		В	3	
C	-5	D	-30	
				[5]


6.	. Find the value of the following, giving your answers in standard form:				
a)	$6.12 \times 10^3 + 3.995 \times 10^2$	[4]			
b)	$(3.5 \times 10^{-3}) \div (7 \times 10^{-5})$	[3]			
a)	$6120 + 399.5 = 6519.5 = 6.5195 \times 10^3$				
L)	$\frac{6120 + 399.5 = 6519.5 = 6.5195 \times 10^{3}}{\frac{0.0035}{0.0007}} = 50 = 5.0 \times 10^{10}$				
	0.00007				
7.	A large map of a certain country hangs on the wall of a room. The scale on the map is	s 1:10 000.			
a)	What is the actual distance, in metres, between two villages that are 2 cm apart?	[2]			
b)	The actual distance between two towns is 14 km. What is the distance on the map that	t represents			
	this?	[2]			
a)	cm cm 1:10000				
,	<u>x2 x2</u>				
	2cm 20000 cm = 200m				
6)	cm cm km 1:10000:0.1				
,	XIYO XIYO				
-	140cm 141cm				

		[2]
I = \$300	$\$4000 \times \frac{R}{100} \times 3 = \300	
P = \$4000		
£ = 3	\$ 120 R = \$300	
R = ?	R = 300 _ 2.5	
	120	
9. Remove the brack	tets and simplify:	
a) $3(x+y) + 2(x - x)$		[3]
b) $x(2y-3z) - y(x)$		[4]
		[']
a) 2(m+)+0	x)	
a) $3(x+y)+2($ = 3x + 3y +		
	15C-29	
=5x+y		
b) x(2y-32).	-	
= 2xy - 3x	2-4xy+5yz	
= -2xy - 3x	2+5y2	

10.	Solve the following equations:	
a)	3(x-3) + 5 = 8 - x	[2]
b)	$\frac{x}{3} + \frac{x}{5} = 2$	[3]
a	3(x-3)+5=8-x	
	3x - 9 + 5 = 8 - x	
	3x - 4 = 8 - x	
	4x = 12	
	x = 3	
b)	$\frac{x}{3} + \frac{x}{5} = 2 \times 15$	
	S S	
	5x + 3x = 30	
	8x = 30	
	x = <u>30</u> 8	
	o	
	$\frac{x=15}{4}$	
	•	

11.	Make x the subject of the following equations:	
a)	4y = 27 + 3x	[2]
b)	12a + 3xb = 14q	[2]
c)	Z = A(3x + 2y)	[3]
)		
aj	4y = 27 + 3x 4y - 27 = 3x $\frac{4y - 27}{3} = x$	
	$\frac{4y-27}{2} = \infty$	
	3	
L)	12a + 3xb = 14q	
	3xb = 14q - 12a x = 14q - 12a3b	
	$x = \frac{14q - 12a}{12a}$	
	36	
c)	Z = A(3x + 2y)	
	Z = 3Ax + 2Ay	
	•	
	Z - 2Ay = 3Ax $Z - 2Ay = x$	
	3A ²	
12.	Write down the 7 th and 8 th terms in the following sequences.	
a)	1,4,9,16, 49,64	[2]
b)	$\frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, \dots, 8, 16$	[2]

13.	. In a check of 100 vehicles, the police found that 30 vehicles had defective lights, 17 had defective brakes and 63 had no defect at all.
	Letting <i>x</i> represent the number of vehicles with both defective lights and defective brakes,
	a) Draw a Venn diagram to represent this information. [5]
	b) Calculate the value of <i>x</i> . [2]
	c) Determine the number of vehicles with only faulty lights. [1]
a)	B
	(30-x)(x)(17-x)
	63
L)	30 - x + x + 17 - x + 63 = 100
	110-2 =100
	110 - x = 100 10 = x
c)	30 - x = 30 - 10 = 20

15. The interior angles of a pentagon are x^0 , x^0 , $2x^0$, $3x^0$ and $3x^0$. Calculate the value of x. [3] $2x^0$ *x*⁰ x^0 $3x^0$ $3x^0$ Sum of angles in pentagon = 540° x + x + 2x + 3x + 3x = 54010x = 540x = 54

$PR = 6$ cm and angle $P = 60^{\circ}$.	[3]
Measure and state i) the length of RQ	[1]
ii) the size of the angle at Q.	[1]
R	
1.2	
$- 60^{\circ}$	
P 8cm Q	
· · · · · · · · · · · · · · · · · · ·	