HARRISON COLLEGE

END OF YEAR EXAMINATION

2022
FOURTH FORM PROMOTION EXAMINATION
DURATION: 1 HOUR AND 30 MINS

INSTRUCTION

INSTRUCTIONS TO CANDIDATES

1) This paper consists of TWO SECTIONS: A AND B.
2) SECTION A has seven multiple choice questions and SECTION B has four questions.
3) Answer ALL questions in both sections.
4) This Examination Paper consists of NINE printed pages and ONE EXTRA page for additional working.
5) Calculators are ALLOWED.
6) If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle it must be given correct to one (1) decimal place, in other cases it must be given correct to three (3) significant figures.
7) The maximum mark for this Examination is 65.
8) Write your NAME and FORM below.

NAME OF STUDENT: \qquad

FORM: \qquad

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

LIST OF FORMULAE

Volume of a prism	$V=A h$ where A is the area of a cross section and h is the perpendicular length.
Volume of cylinder	$V=\pi r^{2} h$ where r is the radius of the base and h is the perpendicular height.
Volume of a right pyramid	$V=\frac{1}{3} A h$ where A is the area of the base and h is the perpendicular height.
Circumference	$C=2 \pi r$ where r is the radius of the circle.
Are length	$S=\frac{\theta}{360} \times 2 \pi r$ where θ is the angle subtended by the are, measured in degrees.
Area of a circle	$A=\pi r^{2}$ where r is the radius of the circle.
Area of a sector	$A=\frac{\theta}{360} \times \pi r^{2}$ where θ is the angle of the sector, measured in degrees.
Area of trapezium	$A=\frac{1}{2}(a+b) h$ where a and b are the lengths of the parallel sides and h is the perpendicular distance between the parallel sides.
Roots of quadratic equations	If $a x^{2}+b x+c=0$,
	then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Trigonometric ratios	$\begin{aligned} & \sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }} \\ & \cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }} \\ & \tan \theta=\frac{\text { opposite side }}{\text { adjacent side }} \end{aligned}$
Area of triangle	Area of $\Delta=\frac{1}{2} b h$ where b is the length of the base and h is the perpendicular height.
	Area of $\triangle A B C=\frac{1}{2} a b \sin C$
Sine rule	Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$ $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule	$a^{2}=b^{2}+c^{2}-2 b c \cos A$

SECTION A

Please shade the letter that corresponds with your answer.

1. $(x+2)(3 x+4)=$
(A) $3 x^{2}-10 x+8$
(B) $3 x^{2}+10 x+8$
(C) $3 x^{2}-2 x-8$
(D) $3 x^{2}-6 x-8$
2. If $\frac{p}{5}=20$, then $p=$
(A) $20-5$
(B) 20×5
(C) $20 \div 5$
(D) $20+5$
3. Item 3 refers to the following diagram

The area of the rectangle in, cm^{2}, is x^{2}. The equation that may be used to find the value is
(A) $x^{2}=2(x-4)$
(B) $\quad x^{2}=(x-2)(x-4)$
(C) $\quad x^{2}=2(x-4)(x-2)$
(D) $\quad x^{2}=(x-4)(x+2)$
4. If $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), B=\binom{1}{0}$ and $C=\binom{0}{1}$, then $A B+2 C$ equals
(A) $\quad\binom{0}{3}$
(B) $\quad\binom{3}{0}$
(C) $\binom{1}{2}$
(D) $\binom{2}{0}$

Items 5 and 6 refers to the following graph of a quadratic function

5. The maximum point of $y=$ $4 x-x^{2}$ is
(A) $\quad(0,0)$
(B) $\quad(2,4)$
(C) $\quad(0,4)$
(D) $\quad(4,2)$
6. The values of x at the points where $y=4 x-x^{2} \quad$ intersects $y=0$ are
(A) $\quad x=0$ and $x=4$
(B) $\quad x=0$ and $x=2$
(C) $\quad x=2$ and $x=4$
(D) $\quad x=0$ and $x=-4$
7.

From the graph, the values of x when $y=-1$ are
(A) 1 and - 1
(B) 2.2 and -2.2
(C) 2.5 and -2.5
(D) 2.8 and -2.8

SECTION B

Question 1

(a) Factorize, completely, each of the following:

$$
\begin{equation*}
\text { (i) } 8 r^{3}+r-64 r^{2}-8 \tag{3}
\end{equation*}
$$

(ii) $2 x^{2}-32$
(iii) $2 x^{2}+5 x-12$
(b) Solve each of the following equations
(i) $2 x^{2}+7 x+8=12$
(ii) $4+6 x=9 x^{2}$, give your answer to 2 decimal places.
(c) Solve the simultaneous equation

$$
\begin{aligned}
& x^{2}-2 y=11 \\
& 3 x+2 y=7
\end{aligned}
$$

Question 2

The diagram, not drawn to scale, shows the positions of three points, P, Q and R.

(i) Find the distance of Q from R , stating your answer correct to 2 decimal places.
(ii) Find the area of $\boldsymbol{\Delta}$ triangle PQR .

Question 3

The diagram below shows the graph of the function $f(x)=x^{2}-6 x+8$ for the values of x from 0 to 6 .

(i) Use the graph to solve the equation $x^{2}-6 x+8=0$.
(ii) Write down the coordinates of the minimum point in the form (x, y).
(iii) Write $x^{2}-6 x+8$ in the form $a(x+h)^{2}+k$ where a, h and k are constants.
(iv) State the equation of the axis of symmetry.

Question 4

(a) The position vectors of A, B and C relative to the origin O , are

$$
\overrightarrow{O A}=\binom{2}{-2} ; \overrightarrow{O B}=\binom{6}{1} \text { and } \overrightarrow{O C}=\binom{10}{4} \text { respectively }
$$

(i) Express in the form $\binom{x}{y}$ the vectors

- $\overrightarrow{A B}$
- $\overrightarrow{A C}$
(ii) Hence, determine whether A, B and C are collinear, giving the reason for your answer.
(b) Determine the value of x for which the matrix $\left(\begin{array}{ll}3 & x \\ 2 & 4\end{array}\right)$ is singular.
(c) M and T are 2×2 matrices such that $M=\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)$ and $T=\left(\begin{array}{ll}1 & 5 \\ 2 & 1\end{array}\right)$
(i) Determine MT
(ii) Given that $T M=\left(\begin{array}{cc}19 & 11 \\ 11 & 4\end{array}\right)$, determine whether matrix multiplication is commutative.
(iii) Determine M^{-1}, the inverse of M
(iv) Hence, calculate the values of x and y for which $\left(\begin{array}{ll}4 & 1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\binom{1}{2}$.

