HARRISON COLLEGE
 THIRD FORM MATHEMATICS

INTERNAL PROMOTION EXAMINATION 2013-2014

DURATION: 1 hour and 45 minutes

GENERAL INSTRUCTIONS TO CANDIDATES:

1) This question paper consists of FIVE printed pages.
2) Write your name clearly on EACH sheet of paper used.
3) All twenty-one questions are to be attempted.
4) Number your responses carefully and identically (including any associated parts) as they appear on the question paper. Do NOT write ANY of your responses beside each other.
5) Calculators are allowed.
6) If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle it must be given correct to one (1) decimal place, in other cases it must be given correct to three (3) significant figures.
7) The maximum mark for this examination is 91.

Write on your foolscap the LETTER that matches your response for Questions 1 - 10 .

1) The mode of the sample $6,5,11,9,9,5,8,5$ is:
(A) 5
(B) 8
(C) 9
(D) 11
2) A bag contains 3 red marbles, 5 blue marbles, 5 green and 7 yellow marbles. A marble is drawn at random from the bag. The probability that this marble is green is:
(A) $\frac{5}{13}$
(B) $\frac{1}{2}$
(C) $\frac{5}{17}$
(D) $\frac{1}{4}$
3) If x rulers cost $\$ p$ each and y erasers cost $\$ q$ each, then the total cost of x rulers and y erasers, in dollars, is:
(A) $\frac{x}{p}+\frac{y}{q}$
(B) $\frac{x y}{p q}$
(C) $p x+q y$
(D) $p+x+q+y$
4) $\frac{m^{2} n}{v^{3}} \times \frac{u^{3} v}{m n^{2}}$, simplifies to:
(A) $\frac{m^{3} n^{3} u^{3}}{v^{3}}$
(B) $\frac{m u^{3}}{n v^{2}}$
(C) $\frac{m^{3} u}{n^{2} v}$
(D) $\frac{m^{6} n u v}{m n v^{6}}$
5) $\left(\frac{a b^{2}}{4}\right)^{3}$ can be expressed as:
(A) $\frac{3 a b^{6}}{12}$
(B) $\frac{a^{3} b^{6}}{12}$
(C) $\frac{a b^{6}}{64}$
(D) $\frac{a^{3} b^{6}}{64}$
6) Given that $x^{2}+y^{2}=r^{2}$ and $r>x$, then $y=$
(A) $\pm \sqrt{r^{2}-x^{2}}$
(B) $r-x$
(C) $r^{2}-x$
(D) $\pm \frac{r^{2}}{x}$
7) Given that $f: x \rightarrow 3 x-5$, then $f(-2)=$
(A) -1
(B) -11
(C) -7
(D) -2
8) Given that y is directly proportional to z and k is a constant then:
(A) $y=\frac{k}{z}$
(B) $y=\frac{z}{k}$
(C) $y=k z$
(D) $k=y z$
9) The gradient of the line perpendicular to $2 y=3 x+5$ is:
(A) $\frac{3}{2}$
(B) $-\frac{2}{3}$
(C) 6
(D) $\frac{2}{3}$
10) In the diagram below, the bearing of A from B is:

A
(A) 240°
(B) 60°
(C) 300°
(D) 120°
[Total: 10]
11) A plot of land is sold for $\$ 40000$. It appreciates in value at the rate of 2.5% per annum. Calculate
(i) the amount of appreciation after one year. [1]
(ii) the value of the land after three years.
12) y is inversely proportional to the cube of x and $y=9$ when $x=2$.

Calculate
(i) the value of the constant of proportionality [2]
(ii) the EXACT value of y when $x=3$. [2]
13) (i) Solve for $x,\left(x+\frac{1}{4}\right) \leq \frac{2}{3}(x-1)$.
(ii) Given that $x \in \boldsymbol{Z}$, state the largest value of x which satisfies the inequality in part (i). [1]
14) Solve for x and y, the simultaneous equations: $\begin{aligned} & 2 x=10+5 y \\ & 5 x-3 y=6\end{aligned}$
[6]
15) The figure below shows two lines \boldsymbol{P} and \boldsymbol{Q}. The equation of Line \boldsymbol{P} is $y+0.7429 x=8.4$ and the equation of Line \boldsymbol{Q} is of the form $y=t x+v$, where t and v are real numbers.

(i) Find the gradient of
(a) line \boldsymbol{P}
(b) line \boldsymbol{Q}.
(ii) Find the equation of line \boldsymbol{Q}.
(iii) Estimate the value of x and the value of y which satisfies BOTH lines \boldsymbol{P} and \boldsymbol{Q}.
16) Isaac is married with three children. In the year 2013, he earned $\$ 15200$.

Tax-Free Allowances per year
Personal Allowance: \$1 500
Spouse: \$1 000
Child: \$500
National Insurance Contribution: \$1 200
Tax Rates
First \$3 000: 10%
Next \$4 000: 20\%
Next \$5 000: 30\%
Over \$12000: 40\%

Using the information in the above table, for income year 2013, calculate
(i) his total tax-free allowances
(ii) his taxable income
(iii) the amount of income tax paid
(iv) his net income.
17) The masses of a sample of breadfruits were recorded as shown in the table below.

Mass (g)	Number of Breadfruits
$1440-1444$	45
$1445-1449$	71
$1450-1454$	12
$1455-1459$	60
$1460-1464$	12

(i) State the modal class.
(ii) Calculate, in kilograms, the mean mass of the breadfruits.
(iii) Determine the probability that a breadfruit chosen at random is at most 1454.5 g .
18) In the diagram below, (not drawn to scale), O is the centre of the circle of radius 7 cm . Chord $A B$ subtends an angle $A O B$ of 120° at the centre of the circle.

(a) Calculate the length of $O M$.
(b) Using the value 3.142 for π calculate
(i) the area of the sector $A O B C$.
(ii) the area of the minor segment of the circle.
(c) Triangle $A O B$ represents the opening of a hollow section of a cylindrical solid of length 20 cm formed by the circle. Calculate the volume of the material that remains in the solid.[3]
19) [Use the figure below to answer this question]
(i) Calculate the value of \boldsymbol{p}
(ii) Calculate the value of \boldsymbol{q}
(iii) Show that $\boldsymbol{r}=25 \cos 35^{\circ} \sin 45^{\circ} \mathrm{cm}$.

20) The Figure below shows the first three diagrams in a sequence. Each diagram is made up of straws joined together by a piece of plasticine at each vertex (or corner). The straws are represented by lines and the plasticine by dots. In each diagram, there are \boldsymbol{p} pieces of plasticine and s straws.

Diagram 1

(a) (i) Determine how many straws would be in the FOURTH diagram
(ii) Determine how many pieces of plasticine would be in the FIFTH diagram.
(b) COPY and COMPLETE the table below by inserting the missing values at the rows marked (i) a) and (i) b); (ii) a) and (ii) b).

No. of Straws, \boldsymbol{s}	Rule Connecting \boldsymbol{p} and \boldsymbol{s}	No. of Pieces of Plasticine, \boldsymbol{p}
4	$1+\left(\frac{3}{4} \times 4\right)$	4
8	$1+\left(\frac{3}{4} \times 8\right)$	7
12	$1+\left(\frac{3}{4} \times 12\right)$	10
(i) 52	a)	
(ii) a) -	b)	-

(c) Write the rule, in terms of \boldsymbol{p} and \boldsymbol{s}, to show how \boldsymbol{p} is related to \boldsymbol{s}.

1) (A)
2) (D)
3) (C)
4) (B)
5) (D)
6) (A)
7) (B)
8) (C)
9) (B)
10) (A)
11) $P=\$ 40000, R=2.5 \%$
(i) $\frac{2.5}{100} \times \$ 40000=\$ 1000 \quad$ OR $\left(\frac{102.5}{100} \times \$ 40000\right)-\$ 40000=\$ 1000$
(ii) Value $=\mathrm{P}\left(1+\frac{R}{100}\right)^{\mathrm{n}}$

$$
=40000\left(1+\frac{2.5}{100}\right)^{3}
$$

OR After 1 year $=\$ 41000$
$=\$ 43075.625$

$$
\begin{aligned}
\text { After } 2 \text { years } & =\$ 41000 \times 1.025 \\
& =\$ 42025 \\
\text { After } 3 \text { years } & =\$ 42025 \times 1.025 \\
& =\$ 43075.625
\end{aligned}
$$

12) $y \alpha \frac{1}{x^{3}} \rightarrow y=\frac{k}{x^{3}}$
(i) $x=2, y=9 \rightarrow 9=\frac{k}{2^{3}}$

$$
72=k
$$

(ii) $y=\frac{72}{x^{3}}$

$$
x=3: y=\frac{72}{3^{3}}=\frac{8}{3}
$$

13) (i) $\left(x+\frac{1}{4}\right) \leq \frac{2}{3}(x-1)$

$$
12\left(x+\frac{1}{4}\right) \leq 12\left[\frac{2}{3}(x-1)\right]
$$

$$
12 x+3 \leq 8(x-1)
$$

$$
12 x+3 \leq 8 x-8
$$

$$
4 x \leq-11
$$

$$
x \leq-\frac{11}{4}
$$

(ii) $x \leq-\frac{11}{4}, x \in Z$

$$
\therefore x=-3
$$

14) $\begin{array}{cc}2 x=10+5 y & \text { Eqn (1) } \\ 5 x-3 y=6 & \text { Eqn (2) }\end{array}$

$$
\begin{gathered}
2 x=10+5 y \quad \operatorname{Eqn}(1) \times 5 \\
5 x-3 y=6 \quad \operatorname{Eqn}(2) \times(-2) \\
10 x-25 y=50 \\
-10 x+6 y=-12 \\
-19 y=38 \\
y=-2 \\
\text { Sub. into Eqn }(1) \\
2 x=10+5(-2) \\
x=0
\end{gathered}
$$

From (1) $x=\frac{10+5 y}{2}$
Sub. into (2): $5\left(\frac{10+5 y}{2}\right)-3 y=6$

$$
\begin{aligned}
& 5(10+5 y)-6 y=12 \\
& 50+25 y-6 y=12 \\
& 19 y=-38 \\
& \quad y=-2
\end{aligned}
$$

Sub. into $x=\frac{10+5 y}{2}=\frac{10+5(-2)}{2}=0$
15) (i) (a) Line P: $y+0.7429 x=8.4$

$$
\begin{aligned}
& y=-0.7429 x+8.4 \\
& \text { Gradient }=-0.7429 x
\end{aligned}
$$

(b) Gradient of Line Q: $\frac{8-2}{3-0}$

$$
\begin{aligned}
& =\frac{6}{3} \\
& =2
\end{aligned}
$$

(ii) $\frac{y-2}{x-0}=\frac{2}{1}$

$$
y-2=2 x
$$

(iii) $x=2.35 \pm 0.1, y=6.6 \pm 0.1$
16) (i) Total Tax-Free Allowance $=\$ 1500$

$$
\begin{aligned}
& +\$ 1000 \\
& +\$(600 \times 3) \\
& +\$ 1200 \\
& \hline \$ 5500
\end{aligned}
$$

(ii) Taxable Income = \$ $15200-\$ 5500$

$$
=\$ 9700
$$

(iii) Income Tax Paid $=\left(\frac{10}{100} \times \$ 3000\right)+\left(\frac{20}{100} \times \$ 4000\right)+\left(\frac{30}{100} \times \$ 2700\right)$

$$
\begin{array}{lll}
=\$ 300 & +\$ 800 & +\$ 810 \\
=\$ 1900 &
\end{array}
$$

(iv) Net Income = \$ $15200-\$ 1900$

$$
\text { = \$ } 13290
$$

17)

Mass (g)	Number of Breadfruits, f	Mid-Interval Value
$1440-1444$	45	$\frac{1439.5+1444.5}{2}=1442$
$1445-1449$	71	$\frac{1444.5+1449.5}{2}=1447$
$1450-1454$	12	$\frac{1449.5+1454.5}{2}=1452$
$1455-1459$	60	$\frac{1454.5+1459.5}{2}=1457$
$1460-1464$	12	$\frac{1459.5+1464.5}{2}=1462$

(i) The modal class is $(1445-1449) \mathrm{g}$
(ii) The mean mass $=\frac{(45 \times 1442)+(71 \times 1447)+(12 \times 1452)+(60 \times 1457)(45 \times 1462)}{45+71+12+60+12}$

$$
\begin{aligned}
& =\frac{64890+102737+17424+87420+17544}{45+71+12+60+12} \\
& =\frac{290015}{200} \\
& =1450.075 \mathrm{~g} \\
& =1.450075 \mathrm{~kg} \\
& =1.45 \mathrm{~kg}(3 \mathrm{~s} . f .)
\end{aligned}
$$

(iii) $\mathrm{P}(x$ is at most 1454.5 g$)$ i.e. $\mathrm{P}(x \leq 1454.5 \mathrm{~g})=\frac{45+71+12}{200}$

$$
=\frac{16}{25}
$$

18) (a) $\cos 60^{\circ}=\frac{O M}{7 \mathrm{~cm}}$ OR $\sin 30^{\circ}=\frac{O M}{7 c m}$
$\cos 60^{\circ} \times 7 \mathrm{~cm}=O M$
OR $\sin 30^{\circ} \times 7 \mathrm{~cm}=O M$
$3.5 \mathrm{~cm}=O M$ OR $3.5 \mathrm{~cm}=O M$
(b) (i) Area of sector $A O B C=\frac{120}{360} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{3} \times 3.142 \times(7 \mathrm{~cm})^{2} \\
& =51.3 \mathrm{~cm}^{2}(3 \text { s.f. })
\end{aligned}
$$

(ii) Now $\cos 30^{\circ}=\frac{M B}{7 c m}$
6.06 cm (3 s.f.) $=M B$

So Area of Minor Segment $=51.3 \mathrm{~cm}^{2}-\left[\left(\frac{1}{2} \times 6.06 \mathrm{~cm} \times 3.5 \mathrm{~cm}\right) \times 2\right]$

$$
\left.=30.1 \mathrm{~cm}^{2} \text { (3 s.f. }\right)
$$

(c) Volume of solid $=\left(3.142 \times 7^{2} \times 20\right)-(6.06 \times 3.5 \times 20)$

$$
=2654.96 \mathrm{~cm}^{3}
$$

19) (i) $\sin 35^{\circ}=\frac{p}{25 \mathrm{~cm}}$

$$
\begin{aligned}
& \sin 35^{0} \times 25 \mathrm{~cm}=p \\
& 14.3 \mathrm{~cm}(3 \text { s.f. })=p
\end{aligned}
$$

(ii) $\cos 35^{\circ}=\frac{q}{25 \mathrm{~cm}}$
$\cos 35^{\circ} \times 25 \mathrm{~cm}=q$
$20.5 \mathrm{~cm}(3$ s.f.) $=q$
(iii) $\sin 45^{\circ}=\frac{r}{q}$
$\sin 45^{\circ}=\frac{r}{25 \cos 35^{\circ} \mathrm{cm}}$
$25 \cos 35^{\circ} \sin 45^{\circ} \mathrm{cm}=r$
20) (a) (i) 16 straws
(ii) 16 pieces of plasticine
$\begin{array}{ll}\text { (b) (i) a) } 1+\left(\frac{3}{4} \times 52\right) & \text { b) } 40\end{array}$
(ii) a) 72
b) $1+\left(\frac{3}{4} \times 72\right)$
(c) $\boldsymbol{p}=1+\left(\frac{3}{4} \times s\right) \quad$ OR $4 \boldsymbol{p}=4+3 \boldsymbol{s}$

