HARRISON COLLEGE

THIRD FORM MATHEMATICS

INTERNAL PROMOTION EXAMINATION 2013 - 2014

DURATION: 1 hour and 45 minutes

GENERAL INSTRUCTIONS TO CANDIDATES:

- 1) This question paper consists of FIVE printed pages.
- 2) Write your name clearly on **<u>EACH</u>** sheet of paper used.
- 3) All <u>twenty-one</u> questions are to be attempted.
- 4) Number your responses carefully and <u>identically</u> (including any associated parts) as they appear on the question paper.
 Do <u>NOT</u> write ANY of your responses beside each other.
- **5**) Calculators are allowed.
- 6) If a numerical answer cannot be given <u>exactly</u>, and the accuracy required is not specified in the question, then in the case of an angle it <u>must</u> be given correct to **one** (1) decimal place, in other cases it <u>must</u> be given correct to <u>three (3)</u> significant figures.
- 7) The maximum mark for this examination is 91.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

<u>Write on your foolscap</u> the LETTER that matches your response for Questions 1 - 10.

1) The mode of the sample 6, 5, 11, 9, 9, 5, 8, 5 is:

2) A bag contains 3 red marbles, 5 blue marbles, 5 green and 7 yellow marbles. A marble is drawn at random from the bag. The probability that this marble is green is:

(A)
$$\frac{5}{13}$$
 (B) $\frac{1}{2}$ (C) $\frac{5}{17}$ (D) $\frac{1}{4}$

3) If x rulers cost p each and y erasers cost q each, then the total cost of x rulers and y erasers, in dollars, is:

(A)
$$\frac{x}{p} + \frac{y}{q}$$
 (B) $\frac{xy}{pq}$ (C) $px + qy$ (D) $p + x + q + y$

4)
$$\frac{m^2 n}{v^3} \times \frac{u^3 v}{mn^2}$$
, simplifies to:
(A) $\frac{m^3 n^3 u^3}{v^3}$ **(B)** $\frac{mu^3}{nv^2}$ **(C)** $\frac{m^3 u}{n^2 v}$ **(D)** $\frac{m^6 nuv}{mnv^6}$
 $\left(ah^2\right)^3$

5)
$$\left(\frac{ab}{4}\right)$$
 can be expressed as:
(A) $\frac{3ab^6}{12}$ (B) $\frac{a^3b^6}{12}$ (C) $\frac{ab^6}{64}$ (D) $\frac{a^3b^6}{64}$

6) Given that $x^2 + y^2 = r^2$ and r > x, then y =

(A)
$$\pm \sqrt{r^2 - x^2}$$
 (B) $r - x$ (C) $r^2 - x$ (D) $\pm \frac{r^2}{x}$

7) Given that
$$f: x \to 3x - 5$$
, then $f(-2) =$
(A) - 1 (B) - 11 (C) - 7 (D) - 2

8) Given that *y* is directly proportional to *z* and *k* is a constant then:

(A)
$$y = \frac{k}{z}$$
 (B) $y = \frac{z}{k}$ (C) $y = kz$ (D) $k = yz$

9) The gradient of the line perpendicular to
$$2y = 3x + 5$$
 is:
(A) $\frac{3}{2}$ (B) $-\frac{2}{3}$ (C) 6 (D) $\frac{2}{3}$

10) In the diagram below, the bearing of *A* from *B* is:

(A) 240°

(D) 120⁰

(B) 60^0 **(C)** 300^0

All working MUST be shown for questions 11 – 20

- **11**) A plot of land is sold for \$ 40 000. It appreciates in value at the rate of 2.5 % per annum. Calculate
 - (i) the amount of appreciation after one year. [1]
 - (ii) the value of the land after three years. [3]
- **12)** *y* is inversely proportional to the cube of *x* and y = 9 when x = 2. Calculate
 - (i) the value of the constant of proportionality [2]
 - (ii) the EXACT value of y when x = 3. [2]
- **13)** (i) Solve for x, $(x + \frac{1}{4}) \le \frac{2}{3}(x 1)$. [5]
 - (ii) Given that $x \in \mathbb{Z}$, state the largest value of x which satisfies the inequality in part (i). [1]
- 14) Solve for x and y, the simultaneous equations: 2x = 10 + 5y5x 3y = 6[6]
- 15) The figure below shows two lines P and Q. The equation of Line P is y + 0.7429x = 8.4 and the equation of Line Q is of the form y = tx + v, where t and v are real numbers.

(i) Find the gradient of

(a) line P	[2]
(b) line Q .	[2]
(ii) Find the equation of line Q .	[2]
(iii) Estimate the value of x and the value of y which satisfies BOTH lines P and Q .	[2]

16) Isaac is married with three children. In the year 2013, he earned \$15 200.

Tax-Free Allowances per year
Personal Allowance: \$1 500
Spouse: \$1 000
Child: \$500
National Insurance Contribution: \$1 200
Tax Rates
First \$3 000: 10%
Next \$4 000: 20%
Next \$5 000: 30%
Over \$12 000: 40%

[5]

[2]

[4]

[2]

[1]

[8]

[2]

[3]

[2]

[**4**]

Using the information in the above table, for income year 2013, calculate

- (i) his total tax-free allowances
- (ii) his taxable income
- (iii) the amount of income tax paid

(iv) his net income.

17) The masses of a sample of breadfruits were recorded as shown in the table below.

Mass (g)	Number of Breadfruits
1440 - 1444	45
1445 - 1449	71
1450 - 1454	12
1455 - 1459	60
1460 - 1464	12

(i) State the modal class.

(ii) Calculate, in kilograms, the mean mass of the breadfruits.

- (iii) Determine the probability that a breadfruit chosen at random is at most 1454.5 g.
- **18)** In the diagram below, (not drawn to scale), O is the centre of the circle of radius 7 cm. Chord *AB* subtends an angle *AOB* of 120^{0} at the centre of the circle.

- (a) Calculate the length of *OM*.
- (b) Using the value 3.142 for π calculate
 - (i) the area of the sector *AOBC*.
 - (ii) the area of the minor segment of the circle.
- (c) Triangle *AOB* represents the opening of a hollow section of a cylindrical solid of length 20 cm formed by the circle. Calculate the volume of the material that remains in the solid.[3]

19) [Use the figure below to answer this question]

- (i) Calculate the value of p
- (ii) Calculate the value of q
- (iii) Show that $r = 25 \cos 35^0 \sin 45^0$ cm.

20) The Figure below shows the first three diagrams in a sequence. Each diagram is made up of straws joined together by a piece of plasticine at each vertex (or corner). The straws are represented by lines and the plasticine by dots. In each diagram, there are p pieces of plasticine and s straws.

(ii) Determine how many pieces of plasticine would be in the FIFTH diagram. [1]

(b) COPY and COMPLETE the table below by inserting the missing values at the rows marked (i) a) and (i) b); (ii) a) and (ii) b).

ſ	41

[3]

[3]

[3]

No. of Straws, s	Rule Connecting <i>p</i> and <i>s</i>	No. of Pieces of Plasticine, p
4	$1 + \left(\frac{3}{4} \times 4\right)$	4
8	$1 + \left(\frac{3}{4} \times 8\right)$	7
12	$1 + \left(\frac{3}{4} \times 12\right)$	10
(i) 52	a)	b)
(ii) a)	b)	55

(c) Write the rule, in terms of p and s, to show how p is related to s.

[2]

End of Examination

<u>Solutions and Marking Key – Third Form Mathematics 2013 – 2014</u>				
1) (A)	2) (D)	3) (C)	4) (B)	5) (D)
6) (A)	7) (B)	8) (C)	9) (B)	10) (A)
11) P = \$ 40 (000, R = 2.5 %			
(i) $\frac{2.5}{100} \times $ \$	40 000 = \$ 100	0	OR $\left(\frac{102.5}{100} \times \$ 40\ 00\right)$	0) - \$ 40 000 = \$ 1000
(ii) Value	$= \mathbf{P}(1 + \frac{R}{100})^n$		OR After 1 year $=$ \$	6 41 000
	$=40\ 000(1+\frac{2}{1})$	$(\frac{15}{00})^3$	After 2 years =	\$ 41 000 × 1.025
	= \$ 43 075.625	i	=	= \$ 42 025
			After 3 years =	\$ 42 025 × 1.025

12)
$$y \ \alpha \frac{1}{x^3} \rightarrow y = \frac{k}{x^3}$$

(i) $x = 2, \ y = 9 \rightarrow 9 = \frac{k}{2^3}$
 $72 = k$
(ii) $y = \frac{72}{x^3}$
 $x = 3: \ y = \frac{72}{3^3} = \frac{8}{3}$

13) (i)
$$(x + \frac{1}{4}) \le \frac{2}{3}(x - 1)$$

 $12(x + \frac{1}{4}) \le 12[\frac{2}{3}(x - 1)]$
 $12x + 3 \le 8(x - 1)$
 $12x + 3 \le 8x - 8$
 $4x \le -11$
 $x \le -\frac{11}{4}$
(ii) $x \le -\frac{11}{4}, x \in \mathbb{Z}$
 $\therefore x = -3$

14) $2x = 10 + 5y \quad Eqn (1)$ $5x - 3y = 6 \quad Eqn (2)$ From (1) $x = \frac{10 + 5y}{2}$ Sub. into (2): $5(\frac{10 + 5y}{2}) - 3y = 6$ 5(10 + 5y) - 6y = 1250 + 25y - 6y = 1219y = -38y = -2Sub. into $x = \frac{10 + 5y}{2} = \frac{10 + 5(-2)}{2} = 0$

OR 2x = 10 + 5y Eqn (1) × 5 5x - 3y = 6 Eqn (2) × (-2) 10x - 25y = 50 -10x + 6y = -12 -19y = 38 y = -2Sub. into Eqn (1) 2x = 10 + 5(-2)x = 0 **15**) (i) (a) Line P: y + 0.7429x = 8.4y = -0.7429x + 8.4Gradient = -0.7429x(b) Gradient of Line Q: $\frac{8-2}{3-0}$ $=\frac{6}{3}$ = 2

(ii) $\frac{y-2}{x-0} = \frac{2}{1}$ y - 2 = 2x

(iii) $x = 2.35 \pm 0.1$, $y = 6.6 \pm 0.1$ **16)** (i) Total Tax-Free Allowance = \$1 500 + \$ 1 000 + \$ (600 × 3) + \$ 1 200 \$ 5 500 (ii) Taxable Income = 15 200 - 5500= \$ 9 700 (iii) Income Tax Paid = $\left(\frac{10}{100} \times \$3\ 000\right) + \left(\frac{20}{100} \times \$4\ 000\right) + \left(\frac{30}{100} \times \$2\ 700\right)$ = \$ 300 + \$ 800 + \$ 810 = \$ 1 900

(iv) Net Income = 15200 - 1900

17)

Mass (g)	Number of Breadfruits, f	Mid-Interval Value
1440 - 1444	45	$\frac{1439.5+1444.5}{2} = 1442$
1445 - 1449	71	$\frac{1444.5 + 1449.5}{2} = 1447$
1450 - 1454	12	$\frac{1449.5+1454.5}{2} = 1452$
1455 - 1459	60	$\frac{1454.5+1459.5}{2} = 1457$
1460 - 1464	12	$\frac{1459.5+1464.5}{2} = 1462$

(i) The modal class is (1445 - 1449)g

(ii) The mean mass =
$$\frac{(45 \times 1442) + (71 \times 1447) + (12 \times 1452) + (60 \times 1457)(45 \times 1462)}{45 + 71 + 12 + 60 + 12}$$
$$= \frac{64890 + 102737 + 17424 + 87420 + 17544}{45 + 71 + 12 + 60 + 12}$$
$$= \frac{290015}{200}$$
$$= 1450.075 \text{ g}$$
$$= 1.450075 \text{ kg}$$
$$= 1.45 \text{ kg} (3 \text{ s.f.})$$
(iii) P (x is at most 1454.5 g) i.e. P (x \le 1454.5 g) = \frac{45 + 71 + 12}{16}

$$=\frac{16}{25}$$

200

18) (a) $\cos 60^{0} = \frac{OM}{7cm}$ OR $\sin 30^{0} = \frac{OM}{7cm}$ $\cos 60^{0} \times 7 \ cm = OM$ OR $\sin 30^{0} \times 7 \ cm = OM$ 3.5 cm = OM OR $3.5 \ cm = OM$

(b) (i) Area of sector
$$AOBC = \frac{120}{360} \times \pi r^2$$

= $\frac{1}{3} \times 3.142 \times (7cm)^2$
= 51.3 cm^2 (3 s.f.)

(ii) Now $\cos 30^0 = \frac{MB}{7cm}$ 6.06 cm (3 s.f.) = MB So Area of Minor Segment = 51.3 cm² - [($\frac{1}{2} \times 6.06cm \times 3.5cm$) × 2] = 30.1 cm² (3 s.f.) (c) Volume of solid = (3.142 × 7² × 20) - (6.06 × 3.5 × 20)

 $= 2654.96 \text{ cm}^3$

19) (i)
$$\sin 35^{0} = \frac{p}{25cm}$$

 $\sin 35^{0} \times 25 \ cm = p$
14.3 cm (3 s.f.) = p

(ii)
$$\cos 35^0 = \frac{q}{25cm}$$

 $\cos 35^0 \times 25 \ cm = q$
 $20.5 \ cm (3 \ s.f.) = q$

(iii)
$$\sin 45^{0} = \frac{r}{q}$$

 $\sin 45^{0} = \frac{r}{25\cos 35^{0}cm}$
25 cos 35⁰ sin 45⁰ cm = r.

20) (a) (i) 16 straws

(ii) 16 pieces of plasticine

(b) (i) a)
$$1 + \left(\frac{3}{4} \times 52\right)$$
 b) 40
(ii) a) 72 b) $1 + \left(\frac{3}{4} \times 72\right)$
(c) $p = 1 + \left(\frac{3}{4} \times s\right)$ OR $4p = 4 + 3s$