THIRD FORM MATHEMATICS Promotion Examination 2012 P. CADOGAN Harrison College

175 Copies

Time $1\frac{3}{4}$ hours INSTRUCTIONS

This question paper consists of <u>THREE</u> printed pages. Write your name clearly on <u>EACH</u> sheet of paper used. Number your answers carefully and do <u>NOT</u> do questions beside one another.

All of the questions are to be attempted. Calculators are allowed. <u>Question 16 is to be done on the sheet of graph paper</u> which is attached to the foolscap provided.

If a numerical answer cannot be given <u>exactly</u>, and the accuracy required is not specified in the question, then in the case of an angle it should be given correct to **one** (1) decimal place, in other cases it should be given correct to <u>three (3)</u> significant figures.

<u>Write on your foolscap</u> the LETTER that matches your response for Questions 1-5. All working <u>MUST</u> be shown for questions 6-16.

1. The length of time required for \$90 to be the simple interest on \$ 500 invested at 6 % per annum

(A) 6 years	(B) 9 years	(C) 3 months	(D) 3 years
-------------	--------------------	--------------	--------------------

2. A bag contains 14 crayons of which 5 are red, 3 are blue and the remainder are yellow. The probability a crayon drawn at random from the bag is yellow is

3. The interquartile range of the sample 35, 36, 37, 38, 39, 40, 41 is (A) 2 (B) 3 (C) 4 (D) 6

4. Twice *x* is added to 3 and the result is not less than 12. This information is best represented by

(A)
$$2x + 3 \ge 12$$
 (B) $2x + 3 \le 12$ (C) $x + 3 > 12$ (D) $x + 3 < 12$

5. *y* varies directly as the square of *x*. If y = 2 when x = 3, then when x = 9, *y* equals

(A) 9 (B) 81 (C) 18 (D)
$$\frac{2}{9}$$

6. *S* varies inversely as T^3 , and S = 56 when $T = \frac{1}{2}$. Calculate the value of *S* when $T = \frac{1}{3}$.

7. Copy and complete the diagram below, given that the relation is $x \rightarrow 3 - 2x$

8. Simplify the following: $12x^2yz^2 \times \frac{1}{4}xz^2$

[4]

[5]

[4]

9. Given $P = \frac{RT^2}{V}$, express <i>T</i> in terms of <i>P</i> , <i>R</i> and <i>V</i> .		[3]
	4x - 6y - 5	

-6y=-3 **10.** Solve for *x* and *y*, the pair of simultaneous equations: [6] 7x - 5y = -6

- **11.** The line segment AB has points A (-2, -5) and B (4, -1).
 - (a) Determine, for this line segment (i) the gradient [2] (ii) the equation of the line AB[3] (iii) the midpoint *M*. [2]
 - (b) Find the equation of the perpendicular bisector of AB
- 12. A married man with one child aged 15 years and a second child aged 10 years earns \$15 000 per annum. He has a dependent relative whom he helps to support. Income tax is levied at the rate of 30% of taxable income.

	Allowance per Year
Single Man	\$ 1 200 per annum
Married Man	\$ 2 000 per annum
Child under 11 years old	\$ 300
Child 11 to 16 years old	\$ 500
Child over 16 years in full-time education	\$ 900
Dependent relative	\$ 350

Using the information in the above table, calculate

(i)	his total tax- free allowances	[5]
(ii)	his taxable income	[1]
(iii)) the amount of income tax paid.	[2]

13. The figure below, not drawn to scale, represents a closed fluid storage tank in the form of a cylinder surmounted by a cone.

The diameter of the cylinder is 35 m and its height is 25 m, and the slant height of the cone is 28 m. The total capacity of the tank 31 170.5 m^{3} .

[Use
$$\pi = \frac{22}{7}$$
. For a cone V = $\frac{1}{3}\pi r^2 h$]

Calculate

- (i) the capacity of the cylindrical section [2] (ii) the capacity of the conical section to the nearest whole number [3] (iii) the perpendicular height of the conical section to the nearest whole number [3] [4]
- (iv) the total surface area of the tank

[3]

14. A Canadian tourist exchanges CAN \$ 500 into Barbados currency at a rate of CAN 1 = BDS 2.10, spending in Barbados, BDS \$ 400. The tourist then travels to Antigua, and changes the remaining Barbados currency into East Caribbean dollars, the exchange rate being BDS \$ 1 = EC \$ 1.35.

(a) How much Barbadian currency was received?	[3]
(b) How must East Caribbean currency was received?	[3]

The visitor spends EC \$ 200 and changes the remainder into Canadian currency at a rate of CAN \$ 1 = EC \$ 2.80.

(c) How much Canadian currency does the tourist receive?	[3]
--	-----

15. A number of students were weighed with the following results.

Weight (Kg)	Frequency
23 - 27	5
28 - 32	10
33 - 37	12
38-42	3

(i) Determine how many students were weighed.	[1]
(ii) State the modal class.	[1]
(iii) Calculate the mean weight of the students weighed.	[5]
(iii) Find the proportion of students who weighed at most 32 Kg.	[2]
16. The fisheries department has 3 buoys A, B and C off the coast. B is due east of A. C is 6 km due south of A. The distance between B and C is 7 km.	
(i) Draw a diagram to represent ALL of this information.	[5]
(ii) Calculate, correct to <u>ONE</u> decimal place a) the distance AB	[2]
a) the distance AB	[2]
b) the bearing of C from B.	[4]

End of Examination