THIRD FORM MATHEMATICS
Internal Promotion Examination 2013
Time $1 \frac{3}{4}$ hours

INSTRUCTIONS

This question paper consists of FOUR printed pages.
Write your name clearly on EACH sheet of paper used.
Number your answers carefully and do NOT do questions beside each other.
All of the questions are to be attempted, and number them identically as they appear on the question paper. Calculators are allowed.
If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle it must be given correct to one (1) decimal place, in other cases it must be given correct to three (3) significant figures.

Write on your foolscap the LETTER that matches your response for Questions $1-10$. All working MUST be shown for questions 11-20.

1. The median of the sample $6,5,11,9,8,5,8$ is:
(A) 5
(B) 8
(C) 11
(D) 9
2. The numbers from 1 to 20 inclusive are each written on a separate piece of paper and placed in a bag. The probability that a piece of paper drawn at random from the bag has the number 3 on it is:
(A) $\frac{1}{10}$
(B) $\frac{3}{20}$
(C) $\frac{1}{20}$
(D) $\frac{1}{2}$
3. If v pens are bought for t dollars each, and w pens for u dollars each, then The average cost per pen, in dollars, is:
(A) $\frac{v+w}{2}$
(B) $\frac{v t+w u}{2}$
(C) $\frac{v+w}{t+u}$
(D) $\frac{v t+w u}{v+w}$
4. $\frac{a^{2} b(a+b)}{a b}=$
(A) $a^{2}(1+b)$
(B) $b(a+b)$
(C) $a(a+b)$
(D) $a^{3} b^{2}(a+b)$
5. In the expression $p=x-y z, z$ can be written as:
(A) $\frac{x-p}{z}$
(B) $\frac{x-p}{y}$
(C) $\frac{p}{z-x}$
(D) $\frac{p-x}{z}$
6. $\left(2 x^{3}\right)^{3}$ can be expressed as:
(A) $6 x^{9}$
(B) $8 x^{6}$
(C) $6 x^{6}$
(D) $8 x^{9}$
7. An example of a one-to-one mapping over the domain $\{-2,-1,0,1,2\}$ is:
(A) $x \rightarrow 2 x+1$
(B) $x \rightarrow x^{2}+2$
(C) $x \rightarrow 2-x^{2}$
(D) $x \rightarrow 2 x^{2}+1$
8. Given that k is a constant and that p is inversely proportional to q, then:
$\mathbf{(A)} p=k q$
(B) $p=\frac{q}{k}$
(C) $p=\frac{k}{q}$
(D) $q=p k$
9. The gradient of the line $3 x-2 y=6$ is:
(A) $\frac{3}{2}$
(B) $\frac{3}{2}$
(C) $-\frac{2}{3}$
(D) $-\frac{3}{2}$
10. In the diagram below, the bearing of \boldsymbol{P} from \boldsymbol{Q} is:

(A) 50^{0}
(B) 230^{0}
(C) 310°
(D) 90°
11. A computer cost $\$ 3000$. It depreciates in value at the rate of 8% per annum. Calculate
(i) the amount of depreciation after one year.
(ii) the cost of the computer after two years.
12. y is directly proportional to the square of x and $y=3$ when $x=2$.

Calculate
(i) the value of the constant of proportionality
(ii) the value of y when $x=4$.
13. Solve for $x, 4(x+2) \geq 3(x-1)+1$.
14. Solve for x and y, the pair of simultaneous equations: $\begin{aligned} & 3 x-5 y=11 \\ & 5 x-y=11\end{aligned}$
15. The figure below (not drawn to scale) shows a line segment $L M$.

(i) Write down the coordinates of the points L and M.

Find, by calculation
(ii) the length of the line segment $L M$.
(iii) the coordinates of P, which is the mid-point of the line segment $L M$.
(iv) the gradient of the line segment $L M$.
(v) the equation of the perpendicular line that passes through the mid-point of the line segment $L M$.
16. A married woman has three children aged 9,12 and 17 years. She earns a gross income of $\$ 40000$ per annum. Income tax is levied at the rate of 4% of taxable income.

Category of Person	Tax-Free Allowance per Year
Single woman	$\$ 1200$ per annum
Married woman	$\$ 2000$ per annum
Child under 11 years old	$\$ 300$
Child 11 to 16 years old	$\$ 500$
Child over 16 years but under 18 years	$\$ 900$

Using the information in the above table, calculate
(i) her total tax-free allowances
(ii) her taxable income
(iii) the amount of income tax paid.
17. A block of wood is 6 cm high. The block has uniform cross-section in the form of a square of side 16 cm .

A cylindrical portion is carved out of the block. The cylindrical hole remaining is 5 cm deep and the diameter of its cross-section is 14 cm . The figure above, (not drawn to scale), shows the top surface of what remains.
Taking $\pi=\frac{22}{7}$, calculate, $\underline{\text { EXACTLY }}$
(a) the volume of the rectangular block of wood before carving.
(b) the area of the wooden top surface of the block after carving.
(c) the capacity of the hole in the block.
(d) the volume of wood remaining in the block after carving.
18. In the below, (not drawn to scale), O is the centre of the circle of radius 9 cm . Chord $A B$ is of length 14 cm .

(a) Use Hero's formula, $\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$, to calculate the area of triangle $A O B$.
(b) Given that angle $A O B$ is 102°, using $\pi=3.142$, calculate to 1 decimal place
(i) the area of the sector $A O B C$.
(ii) the area of the shaded region $A B C$.
19. The heights of a sample of students were recorded as shown in the table below.

Height (cm)	Number of Students
$140-144$	5
$145-149$	17
$150-154$	12
$155-159$	6

(i) Determine the range of the heights
(ii) State the modal class.
(iii) Calculate the mean height of the students.
(iv) Determine the probability that a student chosen at random is at least 150 cm .
20. The diagram below (not drawn to scale) shows $\triangle A B C$ which represents the cross section of a roof. $B G$ is perpendicular to $A G C . A B=12$ metres, $B C=8.4$ metres and angle $B A G=15^{0}$.

Calculate correct to 3 significant figures
(i) the length of $B G$.
(ii) angle $C B G$.
(iii) Calculate the distance $A C$.

