THIRD FORM MATHEMATICS Internal Promotion Examination 2013

P. CADOGAN Harrison College

Time $1\frac{3}{4}$ hours

170 copies

INSTRUCTIONS

This question paper consists of FOUR printed pages. Write your name clearly on <u>EACH</u> sheet of paper used. Number your answers carefully and do <u>NOT</u> do questions beside each other.

All of the questions are to be attempted, and <u>number them identically</u> as they appear on the question paper. Calculators are allowed.

If a numerical answer cannot be given <u>exactly</u>, and the accuracy required is not specified in the question, then in the case of an angle it <u>must</u> be given correct to **one** (1) decimal place, in other cases it <u>must</u> be given correct to <u>three (3)</u> significant figures.

<u>Write on your foolscap</u> the LETTER that matches your response for Questions 1 - 10. All working <u>MUST</u> be shown for questions 11 - 20.

1. The median of the sample 6, 5, 11, 9, 8, 5, 8 is:

- (A) 5 (B) 8 (C) 11 (D) 9
- **2.** The numbers from 1 to 20 <u>inclusive</u> are each written on a separate piece of paper and placed in a bag. The probability that a piece of paper drawn at random from the bag has the number 3 on it is:
- (A) $\frac{1}{10}$ (B) $\frac{3}{20}$ (C) $\frac{1}{20}$ (D) $\frac{1}{2}$
- **3.** If *v* pens are bought for *t* dollars each, and *w* pens for *u* dollars each, then The average cost per pen, in dollars, is:
- (A) $\frac{v+w}{2}$ (B) $\frac{vt+wu}{2}$ (C) $\frac{v+w}{t+u}$ (D) $\frac{vt+wu}{v+w}$

4.
$$\frac{a^2b(a+b)}{ab} =$$

(**A**) $a^2(1+b)$ (**B**) $b(a+b)$ (**C**) $a(a+b)$ (**D**) $a^3b^2(a+b)$

5. In the expression p = x - yz, z can be written as:

(A) $\frac{x-p}{z}$ (B) $\frac{x-p}{y}$ (C) $\frac{p}{z-x}$ (D) $\frac{p-x}{z}$

6. $(2x^3)^3$ can be expressed as:

(A) $6x^9$ (B) $8x^6$ (C) $6x^6$ (D) $8x^9$

7. An example of a one-to-one mapping over the domain $\{-2, -1, 0, 1, 2\}$ is:

(A)
$$x \to 2x + 1$$
 (B) $x \to x^2 + 2$ (C) $x \to 2 - x^2$ (D) $x \to 2x^2 + 1$

8. Given that k is a constant and that p is inversely proportional to q, then:

(A)
$$p = kq$$
 (B) $p = \frac{q}{k}$ (C) $p = \frac{k}{q}$ (D) $q = pk$

9. The gradient of the line 3x - 2y = 6 is:

(A)
$$\frac{3}{2}$$
 (B) $\frac{3}{2}$ (C) $-\frac{2}{3}$ (D) $-\frac{3}{2}$

10. In the diagram below, the bearing of $P \operatorname{\underline{from}} Q$ is:

N

11. A computer cost \$ 3000. It depreciates in value at the rate of 8 % per annum. Calculate

(i) the amount of depreciation after one year.
(ii) the cost of the computer after two years.

12. *y* is directly proportional to the square of *x* and *y* = 3 when *x* = 2. Calculate

(i) the value of the constant of proportionality

(ii) the value of y when x = 4. [2]

13. Solve for x, $4(x + 2) \ge 3(x - 1) + 1$.

[5]

14. Solve for x and y, the pair of simultaneous equations: $\begin{aligned} &3x - 5y = 11 \\ &5x - y = 11 \end{aligned}$ [6]

(i) Write down the coordinates of the points L and M.

[2]

Fine	1, <u>t</u>	y c	<u>alcul</u>	ation	

(ii) the length of the line segment <i>LM</i> .	[2]
(iii) the coordinates of P, which is the mid-point of the line segment LM.	[3]
(iv) the gradient of the line segment <i>LM</i> .	[2]
(v) the equation of the perpendicular line that passes through the mid-point of the	
line segment LM.	[4]

16. A married woman has three children aged 9, 12 and 17 years. She earns a gross income of \$40 000 per annum. Income tax is levied at the rate of 4 % of taxable income.

Category of Person	Tax-Free Allowance per Year	
Single woman	\$ 1 200 per annum	
Married woman	\$ 2 000 per annum	
Child under 11 years old	\$ 300	
Child 11 to 16 years old	\$ 500	
Child over 16 years but under 18 years	\$ 900	

Using the information in the above table, calculate

(i) her total tax-free allowances[5](ii) her taxable income[2](iii) the amount of income tax paid.[2]

17. A block of wood is 6 cm high. The block has uniform cross-section in the form of a square of side 16 cm.

A cylindrical portion is carved out of the block. The cylindrical hole remaining is 5 cm deep and the diameter of its cross-section is 14 cm. The figure above, (not drawn to scale), shows the top surface of what remains.

Taking $\pi = \frac{22}{7}$, calculate, <u>EXACTLY</u>[2](a) the volume of the rectangular block of wood before carving.[2](b) the area of the wooden top surface of the block after carving.[3](c) the capacity of the hole in the block.[2](d) the volume of wood remaining in the block after carving.[2]

18. In the below, (not drawn to scale), *O* is the centre of the circle of radius 9 cm. Chord *AB* is of length 14 cm.

(a) Use Hero's formula, $\sqrt{s(s-a)(s-b)(s-c)}$ where $s = \frac{a+b+c}{2}$, to calculate

the area of triangle AOB.

[5]

- (b) Given that angle AOB is 102° , using $\pi = 3.142$, calculate to 1 decimal place (i) the area of the sector AOBC.
 - (ii) the area of the shaded region ABC.

[3] [2]

Height (cm)	Number of Students
140 - 144	5
145 - 149	17
150 - 154	12
155 – 159	6

19. The heights of a sample of students were recorded as shown in the table below.

(i) Determine the range of the heights	[2]
(ii) State the modal class.	[1]
(iii) Calculate the mean height of the students.	[5]
(iv) Determine the probability that a student chosen at random is at least 150 cm.	[2]

20. The diagram below (not drawn to scale) shows $\triangle ABC$ which represents the cross section of a roof. *BG* is perpendicular to *AGC*. *AB* = 12 metres, *BC* = 8.4 metres and angle *BAG* = 15⁰.

(i) the length of BG .	[3]
(ii) angle <i>CBG</i> .	[3]
(iii) Calculate the distance AC.	[2]

End of Examination