HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2019
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT I - PREVIEW TEST 2
 1 hour 20 minutes

This examination paper consists of 2 printed pages.
This paper consists of $\mathbf{6}$ questions.
The maximum mark for this examination is $\mathbf{6 0}$.

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1) Prove that $\frac{\cos A-\sin A}{1-\tan A} \equiv \cos A$
2) (i) Prove that $\frac{\sin \mathrm{A}+\sin 5 A}{2 \cos 2 A} \equiv \sin 3 A$.
(ii) Hence, find the general solution of the equation $\frac{\sin \mathrm{A}+\sin 5 A}{2 \cos 2 A}=1$. Ans. $\frac{n \pi}{3}+(-1)^{n} \frac{\pi}{6}$
3) (i) Express $3 \sin x-\cos x$ in the form $\boldsymbol{R} \sin (x-\alpha)$, where $\boldsymbol{R}>0$ and $0 \leq \alpha \leq \frac{\pi}{2}$, giving the exact value of \boldsymbol{R}, and the value of α correct to 3 decimal places. Ans. $\sqrt{10}, 0.322^{c}$
(ii) Hence, solve the equation $3 \sin x-\cos x=\frac{\sqrt{3}}{2}$ for $0 \leq x \leq 2 \pi$, giving your answers correct to 3 decimal places. Ans. $0.599^{c}, 3.187^{c}$
4) Find, in exact form, the coordinates of the points of intersection of the two circles

$$
\begin{equation*}
x^{2}+y^{2}+8 x+2 y-22=0 \text { and } x^{2}+y^{2}-6 x+4 y+2=0 \tag{7}
\end{equation*}
$$

Ans. $\left(\frac{73 \pm \sqrt{429}}{50}, \frac{-89 \pm 7 \sqrt{429}}{50}\right)$
5) (a) (i) A curve, C, is defined parametrically by the equations

$$
\begin{equation*}
x=7 \sin \theta-5 \text { and } y=7 \cos \theta+2 . \text { Ans. }(x+5)^{2}+(y-2)^{2}=49 \tag{4}
\end{equation*}
$$

(ii) Describe fully, the locus of C. Ans. circle, centre ($-5,2$), radius 7
(b) A line, \boldsymbol{l}, passes through the point $\boldsymbol{P}(-5,8,-3)$ and is parallel to the vector $-4 \boldsymbol{i}-7 \boldsymbol{j}+3 \boldsymbol{k}$.

Find, for the line l
(i) its vector equation Ans. $\boldsymbol{r}=-5 \boldsymbol{i}+8 \boldsymbol{j}-3 \boldsymbol{k}+\lambda(-4 \boldsymbol{i}-7 \boldsymbol{j}+3 \boldsymbol{k})$
(ii) its cartesian equations Ans. $\frac{x+5}{-4}=\frac{y-8}{-7}=\frac{z+3}{3}$
(c) Find the angle, correct to 1 decimal place, between the lines with equations

$$
\boldsymbol{r}=2 \boldsymbol{i}-5 \boldsymbol{j}+3 \boldsymbol{k}+\lambda(-3 \boldsymbol{i}+2 \boldsymbol{j}-5 \boldsymbol{k}) \text { and } \boldsymbol{r}=-4 \boldsymbol{i}+6 \boldsymbol{j}-\boldsymbol{k}+\mu(5 \boldsymbol{i}-4 \boldsymbol{j}+2 \boldsymbol{k}) \text { Ans. } 37.1^{0}[5]
$$

6) A plane contains three non-collinear points $\boldsymbol{A}(-4,-8,3), \boldsymbol{B}(2,-7,4)$ and $\boldsymbol{C}(-3,5,-1)$
(i) Prove that the vector $-17 \boldsymbol{i}+25 \boldsymbol{j}+77 \boldsymbol{k}$ is normal to the plane
(ii) Hence, obtain the Cartesian equation of the plane. Ans. $-17 x+25 y+77 z=99$
(iii) Find the perpendicular distance of the plane from the origin. Ans. $\frac{99}{\sqrt{6843}}$

END OF TEST

