CAPE 2019

1. (a) Let $4 x^{2}+3 x y^{2}+7 x+3 y=0$.
(i) Use implicit differentiation to show that

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{8 x+3 y^{2}+7}{3(1+2 x y)} \tag{5}
\end{equation*}
$$

(ii) Show that for $f(x, y)=4 x^{2}+3 x y^{2}+7 x+3 y$,

$$
\begin{equation*}
6 \frac{\partial f(x, y)}{\partial y}-10=\left(\frac{\partial^{2} f(x, y)}{\partial y^{2}}\right)\left(\frac{\partial^{2} f(x, y)}{\partial y \partial x}\right)+\frac{\partial^{2} f(x, y)}{\partial x^{2}} \tag{5}
\end{equation*}
$$

1) $4 x^{2}+3 x y^{2}+7 x+3 y=0$

$$
\begin{aligned}
& 8 x+3 y^{2}+3 x\left[2 y \frac{d y}{d x}\right]+7+3 \frac{d y}{d x}=0 \\
&(6 x y+3) \frac{d y}{d x}=-\left(8 x+3 y^{2}+7\right) \\
& \frac{d y}{d x}=-\frac{8 x+3 y^{2}+7}{3+6 x y} \\
&=-\frac{8 x+3 y^{2}+7}{3(1+2 x y)}
\end{aligned}
$$

$$
\text { 11) } f(x, y)=4 x^{2}+3 x y^{2}+7 x+3 y
$$

$$
\frac{\partial f}{\partial y}=0+6 x y+3=3+6 x y
$$

$$
\frac{\partial^{2} f}{\partial y^{2}}=6 x
$$

$$
\frac{\partial^{2} f}{\partial y \partial x}=6 y
$$

$$
\frac{\partial f}{\partial x}=8 x+3 y^{2}+7
$$

$$
\frac{\partial^{2} f}{\partial x^{2}}=8
$$

$$
\begin{aligned}
6 \frac{\partial f}{\partial y}-10 & =6(3+6 x y)-10 \\
& =18+36 x y-10
\end{aligned}
$$

$$
=8+36 x y
$$

$$
\left(\begin{array}{rl}
\left(\frac{\partial^{2} f}{\partial y^{2}}\right)\left(\frac{\partial^{2} f}{\partial y \partial x}\right)+\frac{\partial^{2} f}{\partial x^{2}} & =(6 x)(6 y)+8 \\
& =36 x y+8
\end{array}\right.
$$

(b) Use de Moivre's theorem to prove that $\sin 5 x=16 \sin ^{5} x-20 \sin ^{3} x+5 \sin x$.

$$
\begin{aligned}
(\cos x+i \sin x)^{5} & =\binom{5}{0} \cos ^{5} x+\binom{5}{1} \cos ^{4} x(i \sin x)+\binom{5}{2} \cos ^{3} x(i \sin x)^{2}+\binom{5}{3} \cos ^{2} x(i \sin x)^{3} \\
& +\binom{5}{4} \cos x(i \sin x)^{4}+\binom{5}{5}(i \sin x)^{5} \\
= & \cos ^{5} x+5 i \cos ^{4} x \sin x-10 \cos ^{3} x \sin ^{2} x-10 i \cos ^{2} x \sin ^{3} x \\
& +5 \cos x \sin ^{4} x+i \sin ^{5} x \\
\sin 5 x= & 5 \cos ^{4} x \sin ^{4} x-10 \cos ^{2} x \sin ^{3} x+\sin ^{5} x \\
= & 5 \cos ^{2} x \cos ^{2} x \sin ^{2} x-10 \cos ^{2} x \sin ^{3} x+\sin ^{5} x \\
= & 5\left(1-\sin ^{2} x\right)\left(1-\sin ^{2} x\right) \sin ^{4} x-10\left(1-\sin ^{2} x\right) \sin ^{3} x+\sin ^{5} x \\
= & 5\left(1-2 \sin ^{2} x+\sin ^{4} x\right) \sin x-10\left(\sin ^{3} x-\sin ^{5} x\right)+\sin ^{5} x \\
= & \left(5-10 \sin ^{2} x+5 \sin ^{4} x\right) \sin x-10 \sin ^{3} x+10 \sin ^{5} x+\sin ^{5} x \\
= & 5 \sin x-10 \sin ^{3} x+5 \sin x-10 \sin ^{3} x+10 \sin ^{5} x+\sin ^{5} x \\
= & 16 \sin ^{5} x-20 \sin ^{3} x+5 \sin x
\end{aligned}
$$

(c) (i) Write the complex number $z=(-1+\sqrt{3} i)^{7}$ in the form $r e^{i \theta}$, where $r|z|$ and $\theta=\arg z$.
(ii) Hence, prove that $(-1+\sqrt{3} i)^{7}=64(-1+\sqrt{3} i)$.
1)

$$
\begin{aligned}
& \text { Let } z_{1}=-1+\sqrt{3} i \\
& r_{1}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=2 \\
& \arg z_{1}=\pi-\tan ^{-1}\left(\frac{\sqrt{3}}{1}\right)=\frac{2 \pi}{3} \\
& z_{1}=2 e^{\frac{2 \pi}{3} i} \\
& \begin{aligned}
z & =\left(2 e^{\frac{2 \pi}{3} i}\right)^{7} \\
& =128 e^{\frac{14 \pi}{3} i} \\
& =128 e^{\frac{2 \pi}{3} i}
\end{aligned}
\end{aligned}
$$

$$
\text { 11) } \begin{aligned}
& r(\cos \theta+i \sin \theta) \\
= & 128\left(\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)\right) \\
= & 128\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
= & 64(-1+\sqrt{3} i)
\end{aligned}
$$

2. (a) Let $F_{n}(x)=\int(\ln x)^{n} d x$
(i) Show that $F_{n}(x)=x(\ln x)^{n}-n F_{n-1}(x)$.
(ii) Hence, or otherwise, show that $F_{3}(2)-F_{3}(1)=2(\ln 2)^{3}-6(\ln 2)^{2}+12 \ln 2-6$.
1) $\int_{1}(\ln x)^{n} d x$
$u=(\ln x)^{n} \quad v=1$
$d u=n(\ln x)^{n-1}\left(\frac{1}{x}\right) \quad d v=x$
$F_{n}(x)=x(\ln x)^{n}-\int x\left[n(\ln x)^{n-1}\left(\frac{1}{x}\right)\right] d x$
$=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$
$=x(\ln x)^{n}-n F_{n-1}(x)$
ii) $F_{3}(2)=2(\ln 2)^{3}-3 F_{2}(2)$
$=2(\ln 2)^{3}-3\left[2(\ln 2)^{2}-2 F_{1}(2)\right]$
$=2(\ln 2)^{3}-6(\ln 2)^{2}+6 F_{1}(2)$
$=2(\ln 2)^{3}-6(\ln 2)^{2}+6\left[2(\ln 2)^{\prime}-1 F_{0}(2)\right]$
$=2(\ln 2)^{3}-6(\ln 2)^{2}+12 \ln 2-6 x$
$F_{3}(1)=1(\ln 1)^{3}-6(\ln 1)^{2}+12 \ln 1-6 x$
$=-6 x$
$=-6$

$$
\begin{aligned}
F_{3}(2)-F_{3}(1) & =2(\ln 2)^{3}-6(\ln 2)^{2}+12 \ln 2-6(2)-(-6) \\
& =2(\ln 2)^{3}-6(\ln 2)^{2}+12 \ln 2-6
\end{aligned}
$$

(b) (i) By expressing $\frac{y^{2}+2 y+1}{y^{4}+2 y^{2}+1}$ as partial fractions, show that

$$
\begin{equation*}
\frac{y^{2}+2 y+1}{y^{4}+2 y^{2}+1}=\frac{1}{y^{2}+1}+\frac{2 y}{\left(y^{2}+1\right)^{2}} \tag{7}
\end{equation*}
$$

(ii) Hence, or otherwise, evaluate

$$
\int \frac{y^{2}+2 y+1}{y^{4}+2 y^{2}+1} d y
$$

$$
\text { 1) } \begin{align*}
\frac{y^{2}+2 y+1}{y^{4}+2 y^{2}+1} & =\frac{y^{2}+2 y+1}{\left(y^{2}+1\right)^{2}}=\frac{A y+B}{y^{2}+1}+\frac{C y+D}{\left(y^{2}+1\right)^{2}} \tag{8}\\
y^{2}+2 y+1 & =(A y+B)\left(y^{2}+1\right)+C y+D \\
& =A y^{3}+B y^{2}+A y+B+C y+D \\
& =A y^{3}+B y^{2}+(A+C) y+(B+D)
\end{align*}
$$

Equating y^{3} terms
$A=0$
Equating y^{2} terms
$B=1$
Equating y terms

$$
A+C=2
$$

$$
c=2
$$

Equating constants

$$
\begin{aligned}
& B+D=1 \\
& D=0 \\
& \frac{y^{2}+2 y+1}{y^{4}+2 y^{2}+1}=\frac{1}{y^{2}+1}+\frac{2 y}{\left(y^{2}+1\right)^{2}}
\end{aligned}
$$

11) $\int \frac{y^{2}+2 y+1}{y^{4}+2 y^{2}+1} d y=\int \frac{1}{y^{2}+1} d y+\int \frac{2 y}{\left(y^{2}+1\right)^{2}} d y$

$$
=\tan ^{-1} y+\int 2 y\left(y^{2}+1\right)^{-2} d y
$$

$$
=\tan ^{-1} y+\frac{\left(y^{2}+1\right)^{-2+1}}{-2+1}+c
$$

$$
=\tan ^{-1} y-\left(y^{2}+1\right)^{-1}+c
$$

$$
=\tan ^{-1} y-\frac{1}{y^{2}+1}+c
$$

3. (a) Determine the coefficient of the term in x^{3} in the binomial expansion of $(3 x+2)^{5}$.

$$
\begin{aligned}
& \binom{5}{2}(3 x)^{3}(2)^{2} \\
& =10 \times 27 \times 4 x^{3} \\
& =1080
\end{aligned}
$$

(b) (i) Show that the binomial expansion of $(1+x)^{\frac{1}{4}}+(1-x)^{\frac{1}{4}}$ up to the term in x^{2} is $2-\frac{3}{16} x^{2}$.
(ii) Hence, by letting $x=\frac{1}{16}$, compute an approximation of $\sqrt[4]{17}+\sqrt[4]{15}$, correct to 4 decimal

$$
\begin{align*}
& \text { places. } \begin{aligned}
&(1+x)^{1 / 4}=1+\frac{1}{4} x+\frac{1 / 4(1 / 4-1)}{2!} x^{2} \\
&=1+\frac{1}{4} x-\frac{3}{32} x^{2} \\
&(1-x)^{1 / 4}=1+\frac{1}{4}(-x)+\frac{1}{4}\left(\frac{1}{4}-1\right) \\
& 2!-x)^{2} \\
&=1-\frac{1}{4} x-\frac{3}{32} x^{2} \\
&(1+x)^{1 / 4}+(1-x)^{1 / 4}=1+\frac{1}{4} x-\frac{3}{32} x^{2}+1-\frac{1}{4} x-\frac{3}{32} x^{2} \\
&=2-\frac{3}{16} x^{2} \\
&
\end{aligned} r=1 / 4 \tag{3}
\end{align*}
$$

11) $\left(1+\frac{1}{16}\right)^{1 / 4}+\left(1-\frac{1}{16}\right)^{1 / 4}=\left(\frac{17}{16}\right)^{1 / 4}+\left(\frac{15}{16}\right)^{1 / 4}$

$$
=\frac{17^{1 / 4}}{2}+\frac{15^{1 / 4}}{2}
$$

$$
2-\frac{3}{16} x^{2} \quad=\frac{\sqrt[4]{17}+\sqrt[4]{15}}{2}
$$

$$
2\left(2-\frac{3}{16} x^{2}\right)=\sqrt[4]{17}+\sqrt[4]{15}
$$

$$
2\left(2-\frac{3}{16}\left(\frac{1}{16}\right)^{2}\right)=\sqrt[4]{17}+\sqrt[4]{15}
$$

$$
3.9985=\sqrt[4]{17}+\sqrt[4]{15}
$$

(c) The function $h(x)=x^{3}+x-1$ is defined on the interval [0,1$]$.
(i) Show that $h(x)=0$ has a root on the interval $[0,1]$.
(ii) Use the iteration $x_{n+1}=\frac{1}{x_{n}^{2}+1}$ with initial estimate $x_{1}=0.7$ to estimate the root of $h(x)=$ 0 , correct to 2 decimal places.
[6]

1) $h(x)=x^{3}+x-1$
$h(0)=0^{3}+0-1=-1$
$h(1)=1^{3}+1-1=1$
$h(x)$ is continuous on the interval $[0,1]$

$$
h(0) \times h(1)<0
$$

By the Intermediate value Theorem there must be some $c \in[0,1]$ such that $h(c)=0$. The refore, there is a root between 0 and..

$$
\text { 11) } x_{n+1}=\frac{1}{x_{n}^{2}+1}
$$

$$
x_{1}=0.7
$$

$$
x_{2}=\frac{1}{x_{1}^{2}+1}=0.6711
$$

$$
x_{3}=0.6895
$$

$$
x_{4}=0.6778
$$

$$
x_{5}=0.6852
$$

$$
x_{6}=0.6805
$$

$$
x_{7}=0.6835
$$

$$
\text { Root is } 0.68 \text { to } 2 \text { decimal places }
$$

(d) Use the Newton - Raphson method with initial estimate $x_{1}=5.5$ to approximate the root of $g(x)=\sin 3 x$ in the interval $[5,6]$, correct to 2 decimal places.

$$
x_{n+1}=x_{n}-\frac{g\left(x_{n}\right)}{g^{\prime}\left(x_{n}\right)}
$$

$$
g(x)=\sin 3 x
$$

$$
g^{\prime}(x)=3 \cos 3 x
$$

$$
x_{n+1}=x_{n}-\frac{\sin 3 x}{3 \cos 3 x}
$$

$$
x_{2}=5.5-\frac{\sin 3(5.5)}{3 \cos 3(5.5)}=5.16
$$

$$
x_{3}=5.24
$$

$$
x_{4}=5.24
$$

4. (a) A function is defined as $g(x)=x \sin \left(\frac{x}{2}\right)$.
(i) Obtain the Maclaurin series expansion for g up to the term in x^{4}.
(ii) Hence, estimate $g(2)$.

$$
\text { 1) } \begin{aligned}
& g(x)=x \sin \left(\frac{x}{2}\right) \rightarrow g(0)=0 \\
& g^{\prime}(x)=1 \sin \left(\frac{x}{2}\right)+x \cos \left(\frac{x}{2}\right) \times \frac{1}{2} \\
&=\sin \left(\frac{x}{2}\right)+\frac{x}{2} \cos \left(\frac{x}{2}\right) \rightarrow g^{\prime}(0)=0 \\
& g^{\prime \prime}(x)=\frac{1}{2} \cos \left(\frac{x}{2}\right)+\frac{1}{2} \cos \left(\frac{x}{2}\right)+\frac{x}{2}\left[-\sin \left(\frac{x}{2}\right) \times \frac{1}{2}\right] \\
&=\cos \left(\frac{x}{2}\right)-\frac{x}{4} \sin \left(\frac{x}{2}\right) \\
& g^{\prime \prime \prime}(x)=-\frac{1}{2} \sin \left(\frac{x}{2}\right)-\left[\frac{1}{4} \sin \left(\frac{x}{2}\right)+\frac{x}{4}\left[\frac{1}{2} \cos \left(\frac{x}{2}\right)\right]\right. \\
&=-\frac{1}{2} \sin \left(\frac{x}{2}\right)-\frac{1}{4} \sin \left(\frac{x}{2}\right)-\frac{x}{8} \cos \left(\frac{x}{2}\right) \\
&=-\frac{3}{4} \sin \left(\frac{x}{2}\right)-\frac{x}{8} \cos \left(\frac{x}{2}\right)-1-\frac{x}{\prime \prime \prime}(0)=0 \\
& g^{\prime \prime \prime \prime}(x)=-\frac{3}{4}\left(\frac{1}{2} \cos \left(\frac{x}{2}\right)\right)-\left[\frac{1}{8} \cos \left(\frac{x}{2}\right)+\frac{x}{8}\left(-\frac{1}{2} \sin \left(\frac{x}{2}\right)\right)\right. \\
&=-\frac{3}{8} \cos \left(\frac{x}{2}\right)-\frac{1}{8} \cos \left(\frac{x}{2}\right)+\frac{x}{16} \sin \left(\frac{x}{2}\right) \\
&=-\frac{1}{2} \cos \left(\frac{x}{2}\right)+\frac{x}{16} \sin \left(\frac{x}{2}\right) \\
&\left.g^{\prime \prime}\right) \\
&=\frac{x^{2}}{2}(1)+\frac{x^{2}}{2}-\frac{x}{48} \times\left(-\frac{1}{2}\right)
\end{aligned}
$$

11) $g(2)=\frac{2^{2}}{2}-\frac{2^{4}}{48}$

$$
=\frac{5}{3}
$$

(b) A series is given as $2+\frac{3}{4}+\frac{4}{9}+\frac{5}{16}+\cdots$
(i) Express the nth partial sum S_{n} of the series using sigma notation.
(ii) Hence, calculate $S_{20}-S_{18}$,
(iii) Given that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, show that S_{n} diverges.

$$
\begin{aligned}
& \text { 1) } S_{n}=\sum_{r=1}^{n} \frac{r+1}{r^{2}} \\
& \text { ii) } S_{20}-S_{/ 8}=\frac{19+1}{19^{2}}+\frac{20+1}{20^{2}} \approx 0 \cdot 1079 \\
& \text { iii) } S_{n}=\sum_{n=1}^{\infty} \frac{n+1}{n^{2}}=\sum_{n=1}^{\infty} \frac{n}{n^{2}}+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
&=\sum_{n=1}^{\infty} \frac{1}{n}+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& S_{m}=\sum_{m=1}^{\infty} \frac{1}{m}
\end{aligned}
$$

$S_{2} S_{1}=1$

$$
S_{z^{\prime}}^{2} \quad S_{2}=1+\frac{1}{2}
$$

$$
S_{2}=S_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=1+\frac{1}{2}+\frac{1}{2}=1+\frac{2}{2}
$$

$$
S_{2} S_{8}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=1+\frac{2}{2}+\frac{1}{2}=1+\frac{3}{2}
$$

$$
S_{2} \quad S_{16}=1+\frac{4}{2}
$$

$$
S_{m}=S_{2^{n}}=1+\frac{n}{2}
$$

As $n \rightarrow \infty, S_{m} \rightarrow \infty$
$\therefore S_{m}$ is divergent

$$
\therefore S_{n}=\sum_{n=1}^{\infty} \frac{1}{n}+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { diverges }
$$

(c) Use the method of induction to prove that

$$
\begin{aligned}
P_{n}: \sum_{r=1}^{n} r(r-1) & =\frac{n\left(n^{2}-1\right)}{3} \\
P_{1}: \quad 1(1-1) & =\frac{1\left(1^{2}-1\right)}{3} \\
0 & =0
\end{aligned}
$$

$\therefore P$, is true
Assume P_{n} is true for all $n=k$

$$
\begin{aligned}
& P_{k}: \sum_{r=1}^{k} r(r-1)=\frac{k\left(k^{2}-1\right)}{3} \\
& P_{k+1}: \sum_{r=1}^{k+1} r(r-1)=\frac{(k+1)\left((k+1)^{2}-1\right)}{3}=\frac{(k+1)\left(k^{2}+2 k+1-1\right)}{3} \\
&=\frac{(k+1)\left(k^{2}+2 k\right)}{3}
\end{aligned}
$$

Now, $P_{k+1}=P_{k}+(k+1)+$ ers

$$
\begin{aligned}
& =\frac{k\left(k^{2}-1\right)}{3}+(k+1)(k+1-1) \\
& =\frac{k\left(k^{2}-1\right)}{3}+\frac{3 k(k+1)}{3} \\
& =\frac{k\left(k^{2}-1\right)+3 k(k+1)}{3} \\
& =\frac{k(k+1)(k-1)+3 k(k+1)}{3} \\
& =\frac{(k+1)[k(k-1)+3 k]}{3} \\
& =\frac{(k+1)\left(k^{2}-k+3 k\right)}{3} \\
& =\frac{(k+1)\left(k^{2}+2 k\right)}{3}
\end{aligned}
$$

$\therefore P_{\text {kt, }}$ is true wheneve P_{k} is true.
Hence by mathematical Induction $\sum_{r=1}^{n} r(r-1)=\frac{n\left(n^{2}-1\right)}{3}$.
5. (a) (i) How many numbers made up of 5 digits can be made from the digits $1,2,3,4,5,6,7,8,9$, if each number contains exactly one even digit and no digit is repeated?
(ii) Determine the probability that the number formed in (a) (i) is less than 30000 . [4]
1)
) $\frac{-}{5}-\frac{-}{3}-\frac{-}{2}-$
11) Number begins with 2

$$
\begin{aligned}
& =4 \times 5 \times 4 \times 3 \times 2 \times 5 \\
& \text { OR } \\
& =4 \times{ }^{5} P_{4} \times 5 \\
& =2400
\end{aligned}
$$

$$
\begin{aligned}
\overline{1} \overline{5} \overline{4} \overline{3} \overline{2} & =1 \times 5 \times 4 \times 3 \times 2 \\
& =1 \times{ }^{5} P_{4} \\
& =120
\end{aligned}
$$

Number begins with,

$$
\overline{1}-\frac{-}{4}-\frac{-}{2}=1 \times 4 \times 3 \times 2 \times 4 \times 4
$$

$$
=384
$$

Total number of numbers less than 30000 is 504
Probability $=\frac{504}{2400}=0.21$
(b) A and B are two matrices given below.

$$
A=\left(\begin{array}{ccc}
2 & x & -1 \\
3 & 0 & 2 \\
2 & 1 & 0
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
1 & 2 & 5 \\
2 & 3 & 4 \\
2 & 1 & 2
\end{array}\right)
$$

(i) Determine the value of x for which A^{-1} does NOT exist.
A^{-1} does not exist when $|A|=0$

$$
\begin{aligned}
|A| & =2\left|\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right|-x\left|\begin{array}{cc}
3 & 2 \\
2 & 0
\end{array}\right|+(-1)\left|\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right| \\
& =2(0 \times 0-2 \times 1)-x(3 \times 0-2 \times 2)-1(3 \times 1-0 \times 2) \\
& =2(-2)-x(-4)-1(3) \\
& =-4+4 x-3 \\
& =4 x-7
\end{aligned}
$$

If A^{-1} does not exist then

$$
\begin{aligned}
4 x-7 & =0 \\
4 x & =7 \\
x & =\frac{7}{4}
\end{aligned}
$$

(ii) Given that $\operatorname{det}(A B)=-10$, show that $x=2$.

$$
\begin{aligned}
& |A B|=-10 \\
& |A||B|=-10 \\
& (4 x-7)|B|=-10 \\
& |B|=1\left|\begin{array}{ll}
3 & 4 \\
1 & 2
\end{array}\right|-2\left|\begin{array}{ll}
2 & 4 \\
2 & 2
\end{array}\right|+5\left|\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right| \\
& =1(3 \times 2-4 \times 1)-2(2 \times 2-4 \times 2)+5(2 \times 1-3 \times 2) \\
& =1(2)-2(-4)+5(-4) \\
& =2+8-20 \\
& =-10
\end{aligned} \quad \begin{aligned}
4 x & =8 \\
(4 x-7)(-10) & =-10 \\
4 x-7 & \rightarrow 1
\end{aligned} \quad x=2 .
$$

(iii) Hence, obtain A^{-1}.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
3 & 0 & 2 \\
2 & 1 & 0
\end{array}\right) \quad \begin{aligned}
|A| & =4 x-7 \\
& =4(2)-7
\end{aligned} \\
& x=\left(\begin{array}{lll}
+\left|\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right| & -\left|\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right| & +\left|\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right| \\
-\left|\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right|+\left|\begin{array}{cc}
2 & -1 \\
2 & 0
\end{array}\right|-\left|\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right| \\
+\left|\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right|-\left|\begin{array}{cc}
2 & -1 \\
3 & 2
\end{array}\right|+\left|\begin{array}{ll}
2 & 2 \\
3 & 0
\end{array}\right|
\end{array}\right) \\
& x=\left(\begin{array}{ccc}
-2 & 4 & 3 \\
-1 & 2 & 2 \\
4 & -7 & -6
\end{array}\right) \\
& x^{+}=\left(\begin{array}{ccc}
-2 & -1 & 4 \\
4 & 2 & -7 \\
3 & 2 & -6
\end{array}\right) \\
& A^{-1}=\left(\begin{array}{ccc}
-2 & -1 & 4 \\
4 & 2 & -7 \\
3 & 2 & -6
\end{array}\right)
\end{aligned}
$$

(c) In an experiment, individuals were asked to select from two available colours, green and blue. The individuals selected one colour, two colours or no colour.
70% of the individuals selected at least one colour and 600 individuals selected no colour.
(i) Given that 40% of the individuals selected green and 50% selected blue, calculate the probability that an individual selected BOTH colours.
(ii) Determine the total number of individuals who participated in the experiment.
1)

$$
P(\text { Both })=20 \%
$$

$$
\text { 11) } \begin{aligned}
30 \% & =600 \\
1 \% & =20 \\
100 \% & =2000 \text { persons }
\end{aligned}
$$

6. (a) A differential equation is given as

$$
x \frac{d y}{d x}+y=2 \sin x
$$

(i) Show that the general solution of the differential equation is $y=\frac{c}{x}-\frac{2}{x} \cos x$, where c is a constant.
(ii) Hence, determine the particular solution of the differential equation that satisfies the condition $y=2$ when $x=\pi$.

1) $x \frac{d y}{d x}+y=2 \sin x$

$$
\begin{gathered}
\int\left(x \frac{d y}{d x}+y\right) d x=\int 2 \sin x d x \\
y x=-2 \cos x+c \\
y=\frac{c}{x}-\frac{2}{x} \cos x
\end{gathered}
$$

11) $2=\frac{c}{\pi}-\frac{2}{\pi} \cos (\pi)$

$$
2=\frac{c}{\pi}+\frac{2}{\pi}
$$

$$
2=\frac{c+2}{\pi}
$$

$$
2 \pi=c+2
$$

$$
2 \pi-2=c
$$

$$
y=\frac{2 \pi-2}{x}-\frac{2}{x} \cos x
$$

(b) Show that the general solution of the differential equation $\frac{d y}{d x}=\frac{x y-y}{x^{2}-4}$ is $y=k \sqrt[4]{(x-2)(x+2)^{3}}$ where k is a constant.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x y-y}{x^{2}-4} \\
& \frac{d y}{d x}=\frac{y(x-1)}{x^{2}-4} \\
& \frac{x-1}{x^{2}-4}=\frac{x-1}{(x+2)(x-2)}=\frac{A}{x+2}+\frac{B}{x-2} \\
& \frac{1}{y} d y=\frac{x-1}{x^{2}-4} d x \\
& \int \frac{1}{y} d y=\int \frac{x-1}{x^{2}-4} d x \\
& \ln y=\int_{4(x+2)} \frac{3}{x+} d x \frac{1}{4(x-2)} d x \\
& x-1=A(x-2)+B(x+2) \\
& \text { when } x=2 \\
& 2-1=4 B \\
& 1=4 B \\
& \frac{1}{4}=B \\
& \text { when } x=-2 \\
& -2-1=-4 \mathrm{~A} \\
& -3=-4 A \\
& \frac{3}{4}=A \\
& \ln y=\frac{3}{4} \ln (x+2)+\frac{1}{4} \ln (x-2)+C \\
& =\ln (x+2)^{3 / 4}+\ln (x-2)^{1 / 4}+c \\
& =\ln (x+2)^{3 / 4}(x-2)^{1 / 4}+c \\
& \ln y=\ln \sqrt[4]{(x-2)^{\prime}(x+2)^{3}}+c \\
& e^{\ln y}=e^{\ln \sqrt[4]{(x-2)(x+2)^{3}}}+c \\
& y=e^{c} e^{\ln \sqrt[4]{(x-2)(x+2)^{3}}} \\
& y=e^{c} \sqrt[4]{(x-2)(x+2)^{3}} \\
& y=k \sqrt[4]{(x-2)(x+2)^{3}} \text { when } k=e^{c}
\end{aligned}
$$

(c) Solve the boundary - value problem $y^{\prime \prime}-y^{\prime}-2 y=0$, given that when $x=-1, y=1$ and when

$$
\begin{aligned}
& x=1, y=0 \\
& y^{\prime \prime}-y^{\prime}-2 y=0
\end{aligned}
$$

Auxiliary equation

$$
\begin{aligned}
& u^{2}-u-2=0 \\
& (u+1)(u-2)=0 \\
& u=-1,2 \\
& y=A e^{-x}+B e^{2 x}
\end{aligned}
$$

when $x=-1, y=1$

$$
\begin{aligned}
& \text { When } x=-1, y=1 \\
& 1=A e^{-(-1)}+B e^{2(-1)} \\
& 1=A e^{1}+B e^{-2}
\end{aligned}
$$

when $x=1, y=0$

$$
\begin{align*}
& 0=A e^{-1}+B e^{2(1)} \\
& 0=A e^{-1}+B e^{2} \tag{2}
\end{align*}
$$

Solving (1) and (2) simultaneously

$$
\begin{aligned}
& 1=A e^{1}+\frac{B}{e^{2}} \\
& 0=\frac{A}{e}+B e^{2} \times e^{2} \\
& 1=A e^{1}+\frac{B}{e^{2}} \\
& 0=A e^{\prime}+B e^{4} \\
& 1=\frac{B}{e^{2}}-B e^{4} \\
& 1=B\left(\frac{1}{e^{2}}-e^{4}\right) \\
& 1=B\left(\frac{1-e^{6}}{e^{2}}\right) \\
& \frac{e^{2}}{1-e^{6}}=B
\end{aligned}
$$

Sub $B=\frac{e^{2}}{1-e^{6}}$ into (1)

$$
\begin{aligned}
& 1=A e^{1}+\frac{B}{e^{2}} \\
& 1=A e^{1}+\left(\frac{e^{2}}{1-e^{6}}\right)\left(\frac{1}{e^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 1=A e^{\prime}+\frac{1}{1-e^{6}} \\
& 1-\frac{1}{1-e^{6}}=A e^{\prime} \\
& \frac{1-e^{6}-1}{1-e^{6}}=A e^{\prime} \\
& \frac{-e^{6}}{1-e^{6}}=A e^{\prime} \\
& \frac{-e^{5}}{1-e^{6}}=A \\
& y=A e^{-x}+B e^{2 x} \\
& y=\frac{-e^{5}}{1-e^{6}} e^{-x}+\frac{e^{2}}{1-e^{6}} e^{2 x}
\end{aligned}
$$

