HARRISON COLLEGE INTERNAL EXAMINATION, MARCH 2018 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PREVIEW

PURE MATHEMATICS

UNIT 1 – TEST 2

Time: 1 Hour & 20 minutes

1. Solve, for $-\pi \le \theta \le \pi$, the equation $3tan^2\theta + 4sec\theta = 1$

Total 7 marks

[7]

[6]

2. Prove that

$$sec2A + tan2A \equiv \frac{\cos A + sinA}{\cos A - \sin A}$$

Total 5 marks

- 3. Find the general solution of the equation $\sin x + \sin 5x = 0$.
- 4. Express $5\cos x 3\sin x$ in the form $R\cos(x + \alpha)$, where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$, giving the exact value of *R* and the values of α correct to 1 decimal place.

Hence solve the equation $5\cos x - 3\sin x = 4$ for $0^{\circ} \le x \le 360^{\circ}$. [6]

Total 6 marks

5. Obtain the Cartesian equation of the curve with parametric equations

$$x = 2 \operatorname{cosec} t + 3 \operatorname{and} y = \operatorname{cot} t - 1$$

[5]

6. i) Find the point(s) of intersection of the circles with equations

$$x^{2} + y^{2} - 6x - 4y + 9 = 0$$
 and $x^{2} + y^{2} - 2x - 6y + 9 = 0.$ [8]

ii) Find the equation of the line passing through the two points of intersection. [4]

Total 12 marks

[3]

- 7. A plane passes through the point P(3, 0, -5) and is perpendicular to the vector $\begin{pmatrix} 3 \\ -2 \\ -5 \end{pmatrix}$. Find the
 - i) Vector equation of the plane [2]
 - ii) Cartesian equation of the plane [2]
 - iii) Distance from the origin to the plane [2]

8. i) Find the point of intersection of the lines
$$\begin{pmatrix} 3 \\ 7 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -2 \\ -2 \end{pmatrix}$$
 and $\begin{pmatrix} -6 \\ 17 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$. [3]

ii) Determine the angle between the two lines.

Total 6 marks

Answers:

- 1. $\frac{2\pi}{3}, \frac{-2\pi}{3}$
- 2. Proof
- 3. $\frac{n\pi}{3}$, $n\pi \pm \frac{\pi}{4}$
- 4. $\sqrt{34}cos(x+31^{\circ}), 15.7^{\circ}, 282.3^{\circ}$
- 5. $4y^2 x^2 + 8y + 6x 1 = 0$
- 6. points of intersection $\left(\frac{9}{5}, \frac{18}{5}\right)$ and (1,2), equation of line through points y = 2x

7.
$$r.\begin{pmatrix}3\\-2\\-5\end{pmatrix} = 34, 3x - 2y - 5z = 34, \frac{34}{\sqrt{38}}$$

8. $(-3, 11, 3), 76.0^{\circ}$