CARIBBEAN EXAMINATIONS COUNCIL CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$

FILL IN ALL THE INFORMATION REQUESTED CLEARLY IN CAPITAL LETTERS.

TEST CODE

0	2	2	3	4	0	3	2

SUBJECT PURE MATHEMATICS - UNIT 2 - Paper 032

PROFICIENCY ADVANCED

REGISTRATION NUMBER

NAME OF SCHOOL/CENTRE

CANDIDATE'S FULL NAME (FIRST, MIDDLE, LAST)

DATE OF BIRTH

SIGNATURE \qquad

"*"Barcode Area"*"
Sequential Bar Code

CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$
 PURE MATHEMATICS

UNIT 2 - Paper 032

ANALYSIS, MATRICES AND COMPLEX NUMBERS

1 hour 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. This examination paper consists of THREE sections.
2. Each section consists of ONE question.
3. Answer ALL questions.
4. Write your answers in the spaces provided in this booklet.
5. Do NOT write in the margins.
6. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.
7. If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra page(s) provided at the back of this booklet. Remember to draw a line through your original answer.
8. If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer.

Examination Materials Permitted

Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator
do Not TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

$$
\begin{aligned}
& \text { Copyright © } 2017 \text { Caribbean Examinations Council } \\
& \text { All rights reserved. } \\
& 18 \\
& \hline \text { "*"Barcode Area"*" } \\
& \text { Sequential Bar Code } \\
& \hline
\end{aligned}
$$

SECTION A

Module 1

Answer this question.

1. (a) A point moves in the complex plane such that $|z-3-i|=4$. A second point moves in the complex plane such that $|z-4|=|z+3|$.
(i) Identify the loci of the points giving descriptions, if necessary.
(ii) Using the axes below, sketch the loci of the two points on the same Argand diagram.

(iii) Determine the points that satisfy the two loci.
(b) The diagram below (not drawn to scale) shows an open rectangular box with a partition in the middle.

The dimensions of the box, measured in centimetres, are x, y, and z, and the volume of the box is $384 \mathrm{~cm}^{3}$. The pieces from which the box is assembled are cut from a flat plank of wood with a TOTAL (one-sided) area given by

$$
A=x y+\frac{768}{y}+\frac{1152}{x} .
$$

Given that stationary values of a function $f(x, y)$ occur when both $\frac{\partial f}{\partial x}=0$ and $\frac{\partial f}{\partial y}=0$, and that a stationary value is a

- minimum when $\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\frac{\partial^{2} f}{\partial x \partial y}>0$ and $\frac{\partial^{2} f}{\partial x^{2}}>0$ and $\frac{\partial^{2} f}{\partial y^{2}}>0$
- maximum when $\frac{\partial^{2} f}{\partial x^{2}} \frac{\partial^{2} f}{\partial y^{2}}-\frac{\partial^{2} f}{\partial x \partial y}>0$ and $\frac{\partial^{2} f}{\partial x^{2}}<0$ and $\frac{\partial^{2} f}{\partial y^{2}}<0$,
(i) show that a stationary value of A occurs when $x=12$ and $y=8$.
(ii) Determine the nature of the stationary point of A that occurs at $(12,8)$.

SECTION B

Module 2

Answer this question.

2. (a) (i) Show that $\frac{1}{2 r-1}-\frac{1}{2 r+1}=\frac{2}{4 r^{2}-1}$.
(ii) Hence, or otherwise, show that $\sum_{r=1}^{n} \frac{2}{4 r^{2}-1}=\frac{2 n}{2 n+1}$.
(b) (i) Determine the binomial expansion of $\left(1+\frac{1}{4} x\right)^{5}$.
(ii) Hence, compute 1.025^{5}, correct to two decimal places.
(c) Use the method of bisection to obtain an approximation of $\sqrt{3}$, correct to 2 decimal places. Hint: Use the function $f(x)=x^{2}-3$ in the interval [1.5, 1.9].

SECTION C

Module 3

Answer this question.

3. (a) A matrix, A, is given as $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6\end{array}\right)$.
(i) Determine the inverse of the matrix \mathbf{A}.
"*"Barcode Area"
Sequential Bar Code
(ii) Determine a 3×1 matrix Y such that $A\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)=Y$.
[2 marks]
(iii) Hence, determine the 3×3 matrix B such that $B Y=\left(\begin{array}{c}6 \\ -2 \\ 4\end{array}\right)$.
(b) A differential equation involving a learning curve $P(t)$ is given as

$$
\frac{d P}{d t}=k(M-P(t))
$$

where k is a positive constant, M is the maximum level of performance of which a learner is capable and t is the time.

Solve the differential equation by finding the general solution for $P(t)$.
(c) A bag contains 4 red balls, 2 white balls and 1 green ball. Two balls are to be drawn at random from the bag without replacement.
(i) Use a tree diagram to represent the outcomes of the two draws and the corresponding probabilities.
(ii) Hence, or otherwise, determine the probability that the second ball drawn is green.
"*"Barcode Area"
Sequential Bar Code

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.
Question No. \square
"*"Barcode Area"
Sequential Bar Code

CANDIDATE'S RECEIPT

INSTRUCTIONS TO CANDIDATE:

1. Fill in all the information requested clearly in capital letters.

TEST CODE:

0	2	2	3	4	0	3	2

SUBJECT: PURE MATHEMATICS - UNIT 2 - Paper 032

PROFICIENCY:
ADVANCED

REGISTRATION NUMBER:

FULL NAME: \qquad
(BLOCK LETTERS)

Signature: \qquad

Date: \qquad
2. Ensure that this slip is detached by the Supervisor or Invigilator and given to you when you hand in this booklet.
3. Keep it in a safe place until you have received your results.

INSTRUCTION TO SUPERVISOR/INVIGILATOR:

Sign the declaration below, detach this slip and hand it to the candidate as his/her receipt for this booklet collected by you.

I hereby acknowledge receipt of the candidate's booklet for the examination stated above.

Signature: \qquad
Supervisor/Invigilator

Date: \qquad

