CARIBBEAN EXAMINATIONS COUNCIL
CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$

12 JUNE 2018 (p.m.)

FILL IN ALL THE INFORMATION REQUESTED CLEARLY IN CAPITAL LETTERS.

TEST CODE

0	2	1	3	4	0	3	2

SUBJECT PURE MATHEMATICS - UNIT 1 - Paper 032

PROFICIENCY ADVANCED

REGISTRATION NUMBER

NAME OF SCHOOL/CENTRE

CANDIDATE'S FULL NAME (FIRST, MIDDLE, LAST)

DATE OF BIRTH

SIGNATURE \qquad

"*"Barcode Area"*"
Sequential Bar Code

TEST CODE 02134032
MAY/JUNE 2018

CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$
 PURE MATHEMATICS

UNIT 1 - Paper 032
ALGEBRA, GEOMETRY AND CALCULUS
1 hour 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. This examination paper consists of THREE sections.
2. Each section consists of ONE question.
3. Answer ALL questions.
4. Write your answers in the spaces provided in this booklet.
5. Do NOT write in the margins.
6. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.
7. If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra page(s) provided at the back of this booklet. Remember to draw a line through your original answer.
8. If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer.

Examination Materials Permitted

Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator
do Not TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
Copyright © 2017 Caribbean Examinations Council
All rights reserved.

SECTION A

Module 1

Answer this question.

1. (a) Two propositions, \mathbf{r} and \mathbf{s} are given as
\mathbf{r} : It is Monday
\mathbf{s} : It is raining.
Express the following statements in symbolic form:
(i) It is Monday and it is raining.
(ii) It is not Monday or it is not raining.
(b) (i) Given that \mathbf{p} and \mathbf{q} are two propositions, complete the truth table below.

\mathbf{p}	\mathbf{q}	$\sim \mathbf{p}$	$\sim \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$\sim(\mathbf{p}) \wedge \sim(\mathbf{q})$	$(\mathbf{p} \vee \mathbf{q}) \wedge[\sim(\mathbf{p}) \wedge \sim(\mathbf{q})]$
T	T					
T	F					
F	T					
F	F					

(ii) Hence, state whether $(\mathbf{p} \vee \mathbf{q}) \wedge[\sim(\mathbf{p}) \wedge \sim(\mathbf{q})]$ is a tautology or a contradiction. Justify your response.
(c) Prove by mathematical induction that $2^{n+1}+3^{2 n-1}$ is a multiple of 7 for all positive integers $n \geq 1$ 。
(d) Solve the equation $\log _{x}(2 x-3)+\log _{x}(4)=2$.

SECTION B

Module 2

Answer this question.

2. (a) A line, L_{1}, has equation $\mathbf{r}=\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)+\alpha\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and
a line, L_{2}, has equation $\mathbf{r}=\left(\begin{array}{c}0 \\ 1 \\ -4\end{array}\right)+\beta\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ where α and β are scalar parameters.

Given that L_{1} and L_{2} meet at a point A, determine
(i) the coordinates of A
(ii) the angle between line L_{1} and L_{2}, correct to 3 significant figures.
(iii) Show that the vector $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ is perpendicular to both L_{1} and L_{2}.
(iv) Hence, determine the vector equation of the plane through the point $\left(\begin{array}{c}1 \\ 2 \\ -4\end{array}\right)$, which
is perpendicular to the vector $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(b) Solve the equation $\sin x+\cos 2 x=1$, where $0 \leq x \leq 2 \pi$.
(c) Determine the Cartesian equation of the curve with parametric equations

$$
x=1+t^{2}, y=1+t .
$$

Total 20 marks
"*"Barcode Area"
Sequential Bar Code

SECTION C

Module 3

3. (a) The diagram below shows the graph of $y=f(x)$.

(i) Use the graph to find $f(6)$.

Abstract

\section*{Answer this question.}

"*"Barcode Area"*"
Sequential Bar Code

(ii) Determine whether the function is continuous at $x=6$. Justify your response.
"*" ${ }^{\text {Barcode Area" }}$
Sequential Bar Code
(b) Using first principles, differentiate $f(x)=\sin 2 x$.
(c) The diagram below (not drawn to scale) shows the curve $y=x^{2}$ and the line $y=x+6$.

(i) Determine the points of intersection of the curve $y=x^{2}$ and the line $y=x+6$.
(ii) Determine the area of the region bounded between the curve $y=x^{2}$ and the line $y=x+6$.

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.

Question No. \square

CANDIDATE'S RECEIPT

INSTRUCTIONS TO CANDIDATE:

1. Fill in all the information requested clearly in capital letters.

TEST CODE:

0	2	1	3	4	0	3	2

SUBJECT: \quad PURE MATHEMATICS - UNIT 1 - Paper 032

PROFICIENCY:
ADVANCED

REGISTRATION NUMBER:

FULL NAME: \qquad
(BLOCK LETTERS)

Signature: \qquad

Date: \qquad
2. Ensure that this slip is detached by the Supervisor or Invigilator and given to you when you hand in this booklet.
3. Keep it in a safe place until you have received your results.

INSTRUCTION TO SUPERVISOR/INVIGILATOR:

Sign the declaration below, detach this slip and hand it to the candidate as his/her receipt for this booklet collected by you.

I hereby acknowledge receipt of the candidate's booklet for the examination stated above.

Signature: \qquad
Supervisor/Invigilator

Date: \qquad

