CARIBBEAN EXAMINATIONS COUNCIL CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$

FILL IN ALL THE INFORMATION REQUESTED CLEARLY IN CAPITAL LETTERS.

TEST CODE

0	2	1	3	4	0	3	2

SUBJECT PURE MATHEMATICS - UNIT 1 - Paper 032

PROFICIENCY ADVANCED

REGISTRATION NUMBER

NAME OF SCHOOL/CENTRE

CANDIDATE'S FULL NAME (FIRST, MIDDLE, LAST)

DATE OF BIRTH

SIGNATURE \qquad

"*"Barcode Area"*"
Sequential Bar Code

TEST CODE 02134032

CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$
 PURE MATHEMATICS

UNIT 1 - Paper 032
ALGEBRA, GEOMETRY AND CALCULUS
1 hour 30 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. This examination paper consists of THREE sections.
2. Each section consists of ONE question.
3. Answer ALL questions.
4. Write your answers in the spaces provided in this booklet.
5. Do NOT write in the margins.
6. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.
7. If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra lined page(s) provided at the back of this booklet. Remember to draw a line through your original answer.
8. If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer.

Examination Materials Permitted

Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator
do Not TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.
Copyright © 2015 Caribbean Examinations Council
All rights reserved.

SECTION A

Module 1

Answer this question.

1. (a) Let \mathbf{p}, \mathbf{q} and \mathbf{r} be any three propositions.
(i) Complete the following truth table.

\mathbf{p}	\mathbf{q}	\mathbf{r}	$\mathbf{p} \wedge \mathbf{q}$	$(\mathbf{p} \wedge \mathbf{q}) \wedge \mathbf{r}$	$\mathbf{q} \vee \mathbf{r}$	$\mathbf{p} \wedge(\mathbf{q} \vee \mathbf{r})$
T	T	T				
T	T	F				
T	F	T				
T	F	F				
F	T	T				
F	T	F				
F	F	T				
F	F	F				

[4 marks]
(ii) Hence, state whether the compound statements $(\mathbf{p} \wedge \mathbf{q}) \wedge \mathbf{r}$ and $\mathbf{p} \wedge(\mathbf{q} \vee \mathbf{r})$ are logically equivalent. Justify your answer.
(b) Solve the equation $1-7(4)^{-x}+6(16)^{-x}=0$.
(c) Use mathematical induction to prove that

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\ldots+\frac{1}{n \cdot(n+1)}=\frac{n}{n+1} \text { for } n \in \mathbf{N} .
$$

"*"Barcode Area"
Sequential Bar Code

SECTION B

Module 2

Answer this question.

2. (a) (i) If \mathbf{a} and \mathbf{b} are any two vectors such that $|2 \mathbf{a}+\mathbf{b}|=2|\mathbf{a}|$, prove that $4 \mathbf{a} . \mathbf{b}+\mathbf{b} . \mathbf{b}=0$.
(ii) Hence, show that the vector $4 \mathbf{a}+\mathbf{b}$ is perpendicular to vector \mathbf{b}.
"*"Barcode Area"
Sequential Bar Code
(b) A, B and C are angles in a triangle such that $A+B+C=180^{\circ}$.
(i) Prove that $\tan (A+B)=-\tan C$
(ii) Hence, or otherwise, prove that $\tan A+\tan B+\tan C=\tan A \tan B \tan C$.
(c) The following diagram shows two circles, C_{1} and C_{2}, touching at the point $P(5,5)$. The equation of the circle C_{1} is given by $x^{2}+y^{2}-2 x-4 y-20=0$. The radius of C_{2} is 5 . Determine the equation of the circle, C_{2}.

SECTION C

Module 3

Answer this question.

3. (a) (i) Using first principles, show that the derivative of $\mathrm{f}(x)=x^{\frac{-1}{2}}+4 x$ is

$$
-\frac{1}{2} x^{\frac{-3}{2}}+4
$$

"*"Barcode Area"
Sequential Bar Code
(ii) Hence, determine the equation of a tangent at the stationary point of the curve in (a) (i).
"*"Barcode Area"
Sequential Bar Code
(b) The diagram below, not drawn to scale, shows the curves $y^{2}=x+1$ and $y^{2}=-x+1$. Using integration, determine the area of the shaded region.

"*"Barcode Area"
Sequential Bar Code

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided. Question No. \square

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.

Question No. \square

CANDIDATE'S RECEIPT

INSTRUCTIONS TO CANDIDATE:

1. Fill in all the information requested clearly in capital letters.

TEST CODE:

0	2	1	3	4	0	3	2

SUBJECT: \quad PURE MATHEMATICS - UNIT 1 - Paper 032

PROFICIENCY:
ADVANCED

REGISTRATION NUMBER:

FULL NAME: \qquad
(BLOCK LETTERS)

Signature: \qquad

Date: \qquad
2. Ensure that this slip is detached by the Supervisor or Invigilator and given to you when you hand in this booklet.
3. Keep it in a safe place until you have received your results.

INSTRUCTION TO SUPERVISOR/INVIGILATOR:

Sign the declaration below, detach this slip and hand it to the candidate as his/her receipt for this booklet collected by you.

I hereby acknowledge receipt of the candidate's booklet for the examination stated above.

Signature: \qquad
Supervisor/Invigilator

Date: \qquad

