TEST CODE 02234032
MAY/JUNE 2013

CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION ${ }^{\circledR}$

PURE MATHEMATICS
UNIT 2 - Paper 032

ANALYSIS, MATRICES AND COMPLEX NUMBERS

1 hour 30 minutes

05 JUNE 2013 (a.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.
Each section consists of 1 question.
The maximum mark for each Module is 20.
The maximum mark for this examination is 60 .
This examination consists of 4 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. DO NOT open this examination paper until instructed to do so.
2. Answer ALL questions from the THREE sections.
3. Write your solutions, with full working, in the answer booklet provided.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)
Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

SECTION A (Module 1)

Answer this question.

1. (a) A firm measures production by the Cobb-Douglas production function

$$
P(k(t), l(t))=20 k^{\frac{1}{4}} l^{\frac{3}{4}}
$$

where k is the capital (in millions of dollars) and l is the labour force (in thousands of workers).

Let $l=3$ and $k=4$.
Assume that the capital is DECREASING at a rate of $\$ 200000$ per year and that the labour force is INCREASING at a rate of 60 workers per year.

Given that $\frac{d P}{d t}=\frac{\partial P}{\partial k} \cdot \frac{d k}{d t}+\frac{\partial P}{\partial l} \cdot \frac{d l}{d t}$, calculate $\frac{d P}{d t}$.
(b) Let $F_{n}(x)=\int \cos ^{n} x \mathrm{~d} x$.

By rewriting $\cos ^{n} x$ as $\cos x \cos ^{n-1} x$ or otherwise, prove that

$$
F_{n}(x)=\frac{1}{n} \cos ^{n-1} x \sin x+\left(\frac{n-1}{n}\right) F_{n-2}(x)
$$

(c) Find the square root of the complex number $z=2+i$.

SECTION B (Module 2)

Answer this question.

2. (a) (i) Show that the binomial expansion of $\left(1+\frac{1}{2} x\right]^{4}$ is

$$
1+2 x+\frac{3}{2} x^{2}+\frac{1}{2} x^{3}+\frac{1}{16} x^{4} .
$$

[4 marks]
(ii) Hence, compute 1.377^{4} correct to two decimal places.
(b) (i) Derive the first three non-zero terms in the Maclaurin expansion of $\ln (1+x)$.
(ii) Hence, express the Maclaurin expansion of $\ln (1+x)$ in sigma notation.
[2 marks]
(c) A geometric series is given by

$$
x+\frac{x^{2}}{2}+\frac{x^{3}}{4}+\frac{x^{4}}{8}+\ldots
$$

(i) Determine the values of x for which the series is convergent.
(ii) Hence, or otherwise, if the series is convergent, show that $S_{2}<4$. [3 marks]

SECTION C (Module 3)

Answer this question.

3. (a) \mathbf{A} system of equations $\mathbf{A x}=\mathbf{b}$ is given by

$$
\left(\begin{array}{rrr}
1 & 1 & -1 \\
2 & -1 & 3 \\
1 & -2 & -2
\end{array}\right)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
6 \\
-9 \\
3
\end{array}\right)
$$

(i) Calculate $|\mathbf{A}|$.
(ii) Let the matrix $\mathbf{C}=\left(\begin{array}{rrr}8 & 7 & -3 \\ 4 & -1 & 3 \\ 2 & -5 & -3\end{array}\right)$
a) Show that $\mathbf{C}^{\mathrm{T}} \mathbf{A}-18 \mathbf{I}=0$.
b) Hence or otherwise, obtain \mathbf{A}^{-1}.
c) Solve the given system of equations for x, y and z.
(b) To make new words, three letters are selected without replacement from the word TRAVEL and are written down in the order in which they are selected.
(i) How many three-letter words may be formed?
(ii) For a three-letter word to be legal, it must have at least one vowel (that is a, e, i, o or u). What is the probability that a legal word is formed on a single attempt?

