CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION*
 PURE MATHEMATICS
 UNIT 1 - Paper 032
 ALGEBRA, GEOMETRY AND CALCULUS
 1 hour 30 minutes
 12 JUNE 2013 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.
Each section consists of 1 question.
The maximum mark for each Module is 20.
The maximum mark for this examination is 60 .
This examination consists of 5 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. DO NOT open this examination paper until instructed to do so.
2. Answer ALL questions from the THREE sections.
3. Write your solutions, with full working, in the answer booklet provided.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided)
Mathematical formulae and tables (provided) - Revised 2012
Mathematical instruments
Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

SECTION A (Module 1)

Answer this question.

1. (a) Let \mathbf{p} and \mathbf{q} be two propositions.
(i) State the converse of $(p \wedge q) \rightarrow(q \vee \sim p)$.
(ii) Show that the contrapositive of the inverse of $(p \wedge q) \rightarrow(q \vee \sim p)$ is the converse of $(p \wedge q) \rightarrow(q \vee \sim p)$.
(b) Solve the equation $\log _{2}(x+3)=3-\log _{2}(x+2)$.
(c) The amount of impurity, \mathbf{A}, present in a chemical depends on the time it takes to purify. It is known that $\mathbf{A}=3 e^{4 t}-7 e^{2 t}-6$ at any time t minutes. Find the time at which the chemical is free of impurity (that is when $\mathbf{A}=0$).
(d) On the same axes, sketch the graphs of $f(x)=2 x+3$ and $g(x)=|2 x+3|$.

Show clearly ALL intercepts that may be present.

SECTION B (Module 2)

Answer this question.

2. (a) A is an acute angle and B is an obtuse angle, where $\sin (A)=\frac{4}{5}$ and $\cos (B)=-\frac{3}{5}$.

Without finding the values of angles A and B, calculate $\cos (3 A)$.
(b) Solve the equation $4 \cos 2 \theta-14 \sin \theta=7$ for values of θ between 0 and 2π radians.
[8 marks]
(c) An engineer is asked to build a table in the shape of two circles C_{1} and C_{2} which intersect each other, as shown in the diagram below (not drawn to scale).

The equations of C_{1} and C_{2} are $x^{2}+y^{2}+4 x+6 y-3=0$ and $x^{2}+y^{2}+4 x+2 y-7=0$ respectively.

A leg of the table is attached at EACH of the points Q and R where the circles intersect.
Determine the coordinates of the positions of the legs of the table.

SECTION C (Module 3)

Answer this question.
3. (a) The diagram below shows the graph of a function, $f(x)$.

(i) Determine for the function
a) $\lim _{x \rightarrow 0} f(x)$
[1 mark]
b) $\lim _{x \rightarrow 2} f(x)$.
(ii) State whether f is continuous at $x=2$. Justify your answer.
(b) Differentiate $f(x)=\frac{1}{\sqrt{2 x}}$ from first principles.
(c) Find the x-coordinates of the maximum and minimum points of the curve

$$
f(x)=4 x^{3}+7 x^{2}-6 x
$$

(d) A water tank is made by rotating the curve with equation $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ about the x-axis between $x=0$ and $x=2$.

Find the volume of water that the tank can hold.

