FORM TP 2013234

TEST CODE 02134032

MAY/JUNE 2013

CARIBBEAN EXAMINATIONS COUNCIL

CARIBBEAN ADVANCED PROFICIENCY EXAMINATION®

PURE MATHEMATICS

UNIT 1 – Paper 032

ALGEBRA, GEOMETRY AND CALCULUS

1 hour 30 minutes

12 JUNE 2013 (p.m.)

This examination paper consists of THREE sections: Module 1, Module 2 and Module 3.

Each section consists of 1 question. The maximum mark for each Module is 20. The maximum mark for this examination is 60. This examination consists of 5 printed pages.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. DO NOT open this examination paper until instructed to do so.

2. Answer ALL questions from the THREE sections.

- 3. Write your solutions, with full working, in the answer booklet provided.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact **MUST** be written correct to three significant figures.

Examination Materials Permitted

Graph paper (provided) Mathematical formulae and tables (provided) – **Revised 2012** Mathematical instruments Silent, non-programmable, electronic calculator

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

SECTION A (Module 1)

Answer this question.

(a) Let **p** and **q** be two propositions.

1.

- (i) State the converse of $(p \land q) \rightarrow (q \lor \sim p)$. [1 mark]
- (ii) Show that the contrapositive of the inverse of $(p \land q) \rightarrow (q \lor \neg p)$ is the converse of $(p \land q) \rightarrow (q \lor \neg p)$. [3 marks]
- (b) Solve the equation $\log_2(x+3) = 3 \log_2(x+2)$. [5 marks]
- (c) The amount of impurity, **A**, present in a chemical depends on the time it takes to purify. It is known that $\mathbf{A} = 3e^{4t} 7e^{2t} 6$ at any time *t* minutes. Find the time at which the chemical is free of impurity (that is when $\mathbf{A} = 0$). [6 marks]

(d) On the same axes, sketch the graphs of f(x) = 2x + 3 and g(x) = |2x + 3|.

Show clearly ALL intercepts that may be present.

[5 marks]

Total 20 marks

SECTION B (Module 2)

Answer this question.

2. (a) A is an acute angle and B is an obtuse angle, where $\sin (A) = \frac{4}{5}$ and $\cos (B) = -\frac{3}{5}$. Without finding the values of angles A and B, calculate $\cos (3A)$. [5 marks]

- (b) Solve the equation $4 \cos 2\theta 14 \sin \theta = 7$ for values of θ between 0 and 2π radians. [8 marks]
- (c) An engineer is asked to build a table in the shape of two circles C_1 and C_2 which intersect each other, as shown in the diagram below (not drawn to scale).

The equations of C_1 and C_2 are $x^2 + y^2 + 4x + 6y - 3 = 0$ and $x^2 + y^2 + 4x + 2y - 7 = 0$ respectively.

A leg of the table is attached at EACH of the points Q and R where the circles intersect.

Determine the coordinates of the positions of the legs of the table. [7 marks]

Total 20 marks

SECTION C (Module 3)

Answer this question.

3. (a) The diagram below shows the graph of a function, f(x).

(i) Determine for the function

a) $\lim_{x \to 0} f(x)$ [1 mark]

b)
$$\lim_{x \to 2} f(x)$$
. [2 marks]

(ii) State whether f is continuous at x = 2. Justify your answer. [2 marks]

GO ON TO THE NEXT PAGE

02134032/CAPE 2013

(b) Differentiate
$$f(x) = \frac{1}{\sqrt{2x}}$$
 from first principles. [5 marks]

(c) Find the x-coordinates of the maximum and minimum points of the curve

$$f(x) = 4x^3 + 7x^2 - 6x.$$
 [7 marks]

(d) A water tank is made by rotating the curve with equation $\frac{x^2}{4} + \frac{y^2}{25} = 1$ about the x-axis between x = 0 and x = 2.

Find the volume of water that the tank can hold,

[3 marks]

Total 20 marks

END OF TEST

IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.

100