Properties of Angles

When two lines meet an angle is formed.
Angles are measured in degrees using a protractor. 65 degrees is written 65°.
The angle of b° shown below is called the angle $A B C$ because we can draw the angle by starting at A, moving to B and then to C .

B

The total angle swept out by the line $A B$ when it is rotated until it comes back to its original position is 360°.
360°

An angle that is less than 90° is called acute.

An angle which is exactly 90° is called a right angle and often denoted by a box. The lines are at right angles or perpendicular.

An angle of more than 90° but less than 180° is called obtuse.

Properties of Angles and Straight Lines

1. The total angle at a point is 360°

$$
w+x+y+z=360^{\circ}
$$

2. The total angle on a straight line is 180° In the diagram, $x+y+z=180^{\circ}$

3. When two straight lines cross, vertically opposite angles are equal.

In the diagram,

- angles a and c are equal,
- angles b and d are equal.

O is called a vertex, so these pairs of equal angles are called vertically opposite. Look for angles in an ' X ' shape.

Examples

1. Angles that fit round a point add up to 360°

Angle x must be 215° because

$100+45+215=360$
Work this out as: $100+45=145 \quad 360-145=215$
2. Angles that fit on a straight line add up to 180°

Angle x must be 132° because
$48+132=180$
Work this out as: $\quad 180-48=132$

Exercise 1
In the diagrams below, find the size of each lettered angle.
1.

2.

7.

$x+3 x=180$

$$
x=\frac{180}{4}=45^{\circ}
$$

8.
9.

$$
n=68^{\circ}
$$

6.

$$
m=68
$$

$$
\begin{aligned}
& 3 y+y+5 y=360 \\
& 9 y=360 \\
& y=\frac{360}{9}=40^{\circ}
\end{aligned}
$$

Angles between parallel lines

1. If parallel lines are cut by another line, corresponding angles are equal. In the diagram, the parallel lines are arrowed.

- angles a and p are equal,
- angles b and q are equal,
- angles c and r are equal,
- angles d and s are equal.

These pairs of angles are called corresponding angles.
Look for an ' F ' shape.

2. Alternate angles between parallel lines are equal

In the diagram, $g=h$.
They are on different sides of the line crossing the parallels. This is why they are called alternate angles. Look for a ' Z ' shape.
路
3. Interior angles between parallel lines add up to 180°

In the diagram, $k+l=180^{\circ}$.
They are called interior angles.

.
5.

Worked Example 1.

Find the angles marked with letters in this diagram:

$\mathbf{a}=108^{\circ}$
$\mathbf{b}=72^{0}$
$\mathbf{c}=108^{\circ}$
$\mathbf{e}=72^{\circ}$
$\mathbf{a}=72^{\circ}$

Worked Example 2.

Look at this diagram, write as many pairs as you can of
(a) vertically opposite
q and s
y and x
r and $t \quad 2$ and w
(b) corresponding
s and w
q and r
r and $y \quad t$ and x
(c) alternate

$$
y \text { and } t
$$

(d) interior angles
q and y

Exercise 2

In the diagrams below, find the size of each lettered angle.

2.

3.

4.

$$
\begin{aligned}
& q=105^{\circ} \\
& r=105^{\circ} \\
& p=80^{\circ}
\end{aligned}
$$

5.

$$
\begin{aligned}
& b=62^{\circ} \quad c=28^{\circ} \\
& y=62^{\circ} \\
& x=28^{\circ}
\end{aligned}
$$

