Properties of Angles

When two lines meet an angle is formed. Angles are measured in degrees using a protractor. 65 degrees is written 65° . The angle of b° shown below is called the angle *ABC* because we can draw the angle by starting at *A*, moving to *B* and then to C.

B A b c

The total angle swept out by the line AB when it is rotated until it comes back to its original position is 360°.

An angle that is less than 90° is called acute.

An angle which is exactly 90° is called a **right angle** and often denoted by a box. The lines are at right angles or perpendicular.

An angle of more than 90° but less than 180° is called **obtuse**.

An angle of more than 180° but less than 360° is called **reflex**.

Properties of Angles and Straight Lines

- 1. The total angle at a point is 360° $w + x + y + z = 360^{\circ}$
- 2. The total angle on a straight line is 180° In the diagram, $x + y + z = 180^{\circ}$

In the diagram,

- angles *a* and *c* are equal,
- angles *b* and *d* are equal.

O is called a **vertex**, so these pairs of equal angles are called **vertically opposite.** Look for angles in an 'X' shape.

x

Examples

1. Angles that fit round a point add up to 360°

Angle x must be 215° because 100 + 45 + 215 = 360

Work this out as: 100 + 45 = 145 360 - 145 = 215

2. Angles that fit on a straight line add up to 180°

Angle x must be 132° because 48 + 132 = 180

Work this out as: 180 - 48 = 132

Exercise 1

In the diagrams below, find the size of each lettered angle.

Angles between parallel lines

- 1. If parallel lines are cut by another line, corresponding angles are equal. In the diagram, the parallel lines are arrowed.
 - angles *a* and *p* are equal,
 - angles *b* and *q* are equal,
 - angles *c* and *r* are equal,
 - angles *d* and *s* are equal.

These pairs of angles are called **corresponding angles**. Look for an 'F' shape.

2. Alternate angles between parallel lines are equal

In the diagram, g = h.

They are on different sides of the line crossing the parallels. This is why they are called **alternate angles.** Look for a 'Z' shape.

3. Interior angles between parallel lines add up to 180°

In the diagram, $k + l = 180^{\circ}$.

They are called interior angles.

Worked Example 1.

Find the angles marked with letters in this diagram:

Worked Example 2.

Look at this diagram, write as many pairs as you can of

(a) vertically opposite $q \text{ and } s \qquad y \text{ and } x$ $r \text{ and } t \qquad Z \text{ and } w$ (b) corresponding $s \text{ and } w \qquad q \text{ and } z$ $r \text{ and } y \qquad t \text{ and } x$ (c) alternate y and t q and w(d) interior angles

(d) interior angles 2 and 7 w and t

Exercise 2

In the diagrams below, find the size of each lettered angle.

