PREVIEW UNIT 1 TEST 2 (2014)

1. (a) Determine the Cartesian equation for the curve defined parametrically by

$$x = \sin t \quad y = \cot t$$

(b) The circle C_1 has equation $x^2 + y^2 + 6x - 8y = 0$. Determine

- (i) the centre and radius of C_1 .
- (ii) the exact length of the tangent from the point A(3, -4).

The circle C_2 with equation $x^2 + y^2 + 4x - 4y = 12$ intersects C_1 at *P* and *Q*.

(iii) Determine the coordinates of *P* and *Q*.

Ans: (a)
$$y^2 = \frac{1-x^2}{x^2}$$
 (b)(i) $C(-3,4), r = 5$ (ii) $5\sqrt{3}$ (iii) $(-6,0)(2,4)$

- 2. (a) Prove that $\frac{\csc x}{\tan x} = \cot x \csc x$
 - (b) Find the general solutions of the equation

$$2\sin^2\theta - \cos\theta = 1$$

- (c) (i) Express $f(\theta) = 6\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$ where R > 0 and $0 \le \alpha < \frac{\pi}{2}$.
 - (ii) Hence, state the maximum value of $f(\theta)$ and the value of θ for which this maximum occurs.

Ans: (b) $\frac{\pi}{3} + 2n\pi; \frac{5\pi}{3} + 2n\pi; (2n+1)\pi, n \in \mathbb{Z}$ (c) (i) $\sqrt{45}\cos(\theta - 0.464^c)$ (ii) $f(\theta)_{max} = \sqrt{45}, \theta = 0.464^c$

3. The position vectors of the points *A*, *B*, *C* are given by

$$a = 4i + 3j + 5k, b = i + 2k, c = 2i + 4j + 5k$$

(a) Determine

(i) the vectors (a) \overrightarrow{AB} ,

- (b) \overrightarrow{BC}
- (ii) the equation of the line, *l*, which passes through the points *A* and *B*.
- (iii) the angle between *a* and *c*.
- (b) (i) Show that the vector -i 2j + 3k is perpendicular to the plane through the points *A*, *B* and *C*.
 - (ii) Hence, determine the equation of the plane in the form r.n = d.

Ans: (a) (i)
$$\overrightarrow{AB} = \begin{pmatrix} -3 \\ -3 \\ -3 \end{pmatrix}, \overrightarrow{BC} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$
 (ii) $l = \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ -3 \\ -3 \end{pmatrix}$ (iii) 18.43° (b) (ii) $r. \begin{pmatrix} -1 \\ -2 \\ 3 \end{pmatrix} = 5$