PREVIEW UNIT 1 TEST 2 (2014)

1. (a) Determine the Cartesian equation for the curve defined parametrically by

$$
x=\sin t \quad y=\cot t
$$

(b) The circle C_{1} has equation $x^{2}+y^{2}+6 x-8 y=0$. Determine
(i) the centre and radius of C_{1}.
(ii) the exact length of the tangent from the point $A(3,-4)$.

The circle C_{2} with equation $x^{2}+y^{2}+4 x-4 y=12$ intersects C_{1} at P and Q.
(iii) Determine the coordinates of P and Q.

$$
\text { Ans: (a) } y^{2}=\frac{1-x^{2}}{x^{2}} \text { (b)(i) } C(-3,4), r=5 \text { (ii) } 5 \sqrt{3} \text { (iii) }(-6,0)(2,4)
$$

2. (a) Prove that $\frac{\csc x}{\tan x}=\cot x \csc x$
(b) Find the general solutions of the equation

$$
2 \sin ^{2} \theta-\cos \theta=1
$$

(c) (i) Express $f(\theta)=6 \cos \theta+3 \sin \theta$ in the form $R \cos (\theta-\alpha)$ where $R>0$ and $0 \leq \alpha<\frac{\pi}{2}$.
(ii) Hence, state the maximum value of $f(\theta)$ and the value of θ for which this maximum occurs.

Ans: (b) $\frac{\pi}{3}+2 n \pi ; \frac{5 \pi}{3}+2 n \pi$; $(2 n+1) \pi, n \in \mathbb{Z}$ (c) (i) $\sqrt{45} \cos \left(\theta-0.464^{c}\right.$) (ii) $f(\theta)_{\max }=\sqrt{45}$, $\theta=0.464^{c}$
3. The position vectors of the points A, B, C are given by

$$
a=4 \boldsymbol{i}+3 \boldsymbol{j}+5 \boldsymbol{k}, b=\boldsymbol{i}+2 \boldsymbol{k}, c=2 \boldsymbol{i}+4 \boldsymbol{j}+5 \boldsymbol{k}
$$

(a) Determine
(i) the vectors
(a) $\overrightarrow{A B}$,
(b) $\overrightarrow{B C}$
(ii) the equation of the line, l, which passes through the points A and B.
(iii) the angle between a and c.
(b) (i) Show that the vector $-\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$ is perpendicular to the plane through the points A, B and C.
(ii) Hence, determine the equation of the plane in the form $r . n=d$.

Ans: (a) (i) $\overrightarrow{A B}=\left(\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right), \overrightarrow{B C}=\left(\begin{array}{l}1 \\ 4 \\ 3\end{array}\right)$ (ii) $l=\left(\begin{array}{l}4 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}-3 \\ -3 \\ -3\end{array}\right)$ (iii) 18.43° (b) (ii) $r .\left(\begin{array}{l}-1 \\ -2 \\ 3\end{array}\right)=5$

