HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2014
CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
SCHOOL BASED ASSESSMENT
PURE MATHEMATICS
PREVIEW UNIT 1 - TEST 1
1 hour 30 minutes
This examination paper consists of $\mathbf{2}$ printed pages.
This paper consists of $\mathbf{9}$ questions.
The maximum mark for this examination is $\mathbf{6 0}$.

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1) Given that \boldsymbol{p} and \boldsymbol{q} are propositions, use the algebra of propositions to show that

$$
\begin{equation*}
(p \vee q) \wedge(p \wedge q) \equiv(p \wedge q) \tag{3}
\end{equation*}
$$

2) (i) Evaluate $\sum_{r=5}^{500}(2 r+5)$.
(ii) Given that $\sum_{r=1}^{n}(p r+q)=2 n^{2}+n$, find the constants p and q.
3) (a) The sketch below, not drawn to scale, shows part of the graph of $y=-x^{3}+b x^{2}+c x+d$, where b, c and d are constants.

The points P, Q and R have coordinates $(-1,0),(1,0)$ and $(3,0)$ respectively.

The curve crosses the y-axis at V.
(i) Evaluate b, c and d.
(ii) Determine the coordinates of V.
(b) Solve the equation $2 x^{3}+x=3$ for $x \boldsymbol{\epsilon} \boldsymbol{R}$.
4) Prove by mathematical induction that $\sum_{r=1}^{n} \frac{1}{(4 r-3)(4 r+1)}=\frac{n}{4 n+1} \forall n \in N$.
5) (a) By using the substitution $u=3^{x}$, solve the equation $9^{x}-5\left(3^{x}\right)+4=0$.
(b) Solve for x the equation $\mathrm{e}^{3 x}=4-4 \mathrm{e}^{-3 x}$, giving your answer in terms of \ln.
6) The rate of growth of a bacterial colony is given by $\mathrm{P}(t)=2+5^{t}$, where $\mathrm{P}(t)$ represents the number of bacteria at time t minutes.

Determine
(i) the initial number of bacteria in the colony
(ii) the length of time taken for the number of bacteria in the colony to reach 1000000 . [4]
7) The function f is defined by $f: x \rightarrow \ln 2 x: x \in \boldsymbol{R}, x>0$.
(i) Sketch the graph of f, showing clearly any intersection with the axes.
(ii) Determine an expression for the inverse function, $f^{-1}(x)$.
(iii) State the domain, and the range of $f^{-1}(x)$.

The function g is defined by $g: x \rightarrow \frac{1}{2} x-4, x \in \boldsymbol{R}$.
(iv) Determine $f g(x)$.
8) Find the range of values of $x \in \boldsymbol{R}$ for which $\frac{3-x}{2 x-5} \geq 0, x \neq \frac{5}{2}$
9) Solve for $x \in \boldsymbol{R}, x+4=|2 x|$

End of Preview Test

PREVIEW SOLUTIONS - CAPE 2014: UNIT 1 TEST 1

1) $(p \vee q) \wedge(p \wedge q) \equiv(p \wedge q)$

Proof: LHS
$(\boldsymbol{p} \vee \boldsymbol{q}) \wedge(\boldsymbol{p} \wedge \boldsymbol{q})$
$=[(\boldsymbol{p} \vee \boldsymbol{q}) \wedge \boldsymbol{p}] \wedge[(\boldsymbol{p} \vee \boldsymbol{q}) \wedge \boldsymbol{q}] \quad$ distributive $[1+1$ marks $]$
$=[p] \wedge[\boldsymbol{q}] \quad$ absorption [1 mark]
$=(\boldsymbol{p} \wedge \boldsymbol{q})$
2) (i) $\sum_{r=5}^{500}(2 r+5)$

$$
\left.\begin{array}{ll}
=\sum_{r=1}^{500}(\mathbf{2 r}+\mathbf{5})-\sum_{r=1}^{4}(\mathbf{2 r}+\mathbf{5}) & \text { [1 mark] } \\
=\left[2 \sum_{r=\mathbf{1}}^{500} r+\sum_{\mathbf{r}=\mathbf{1}}^{500} \mathbf{5}\right]-\left[2 \sum_{r=1}^{4} r+\sum_{\mathbf{r}=\mathbf{1}}^{4} \mathbf{5}\right] & {[1 \mathrm{mark}]} \\
=2\left[\frac{\mathbf{1}}{2}(\mathbf{5 0 0})(\mathbf{5 0 0}+\mathbf{1})\right]+[(\mathbf{5} \times \mathbf{5 0 0})]-\left(2\left[\frac{\mathbf{1}}{\mathbf{2}}(\mathbf{4})(\mathbf{4}+\mathbf{1})\right]+[(\mathbf{5} \times \mathbf{4})]\right) & {[1 \mathrm{mark}]} \\
=252960 &
\end{array}\right] \text { mark] }
$$

(ii) $\sum_{r=1}^{n}(\boldsymbol{p r}+\boldsymbol{q})=2 n^{2}+n$

$$
\begin{array}{ll}
\boldsymbol{p}\left[\frac{1}{2}(\boldsymbol{n})(\boldsymbol{n}+\mathbf{1})\right]+(\boldsymbol{q} \times \boldsymbol{n})=2 n^{2}+n & {[1 \text { mark }]} \\
\boldsymbol{p}[(\boldsymbol{n})(\boldsymbol{n}+\mathbf{1})]+\mathbf{2 q} \boldsymbol{q}=4 n^{2}+2 n & \\
p n^{2}+p n+\mathbf{q} \boldsymbol{q}=4 n^{2}+2 n & \\
p n^{2}+(p+\mathbf{2 q}) \boldsymbol{n}=4 n^{2}+2 n & {[1 \text { mark }]} \\
& \\
p=4,(p+\mathbf{2 q})=2 & {[1 \text { mark }]} \\
\quad 4+\mathbf{2 q}=2 & \\
\quad q=-1 & {[1 \text { mark }]}
\end{array}
$$

(ii) $V(0, d)$ so $V(0,-3)$
[1 mark]
(b) $2 x^{3}+x=3$
$2 x^{3}+x-3=0 \quad$ [1 mark]
$(x-1)\left(2 x^{2}+2 x+3\right)=0$
[1+1+1marks]
$x=1$, no real solutions
[1+1 marks]
4) Let P_{n} be the statement " $\sum_{r=1}^{n} \frac{1}{(4 r-3)(4 r+1)}=\frac{n}{4 n+1} \forall n \in N$."

Basic Step - To Prove P_{n} is true for $n=1$ i.e. To Prove P_{1} is true
When $r=1$, LHS $=\frac{1}{(1)(4+1)}=\frac{1}{5}$

When $n=1$, RHS $=\frac{1}{4(1)+1}=\frac{1}{5}$
$\therefore P_{1}$ is true
Inductive Step - Assume P_{n} is true for $n=k$ i.e. Assume P_{k} is true

$$
\begin{align*}
P_{k} & \equiv \sum_{r=1}^{k} \frac{1}{(4 r-3)(4 r+1)} \\
& =\frac{k}{4 k+1} \forall k \in Z^{+} \tag{1mark}
\end{align*}
$$

We are required to show that if P_{k} is true then

$$
\begin{aligned}
P_{k+1} & \equiv \sum_{r=1}^{k+1} \frac{1}{(4 r-3)(4 r+1)} \\
& =\frac{(k+1)}{4(k+1)+1} \\
& =\frac{k+1}{4 k+5} \forall k \in N
\end{aligned}
$$

Now $P_{k+1}=$ Sum of first k terms $+(k+1)^{\text {st }}$ term

$$
=P_{k}+\frac{1}{[4(k+1)-3][4(k+1)+1]}
$$

$$
=\sum_{r=1}^{k} \frac{1}{(4 r-3)(4 r+1)}+\frac{1}{[4 k+1][4 k+5]}
$$

$$
=\frac{k}{4 k+1}+\frac{1}{[4 k+1][4 k+5]}
$$

$$
=\frac{k[4 k+5]+1}{[4 k+1][4 k+5]}
$$

$$
=\frac{4 k^{2}+5 k+1}{[4 k+1][4 k+5]}
$$

$$
=\frac{(4 k+1)(k+1)}{[4 k+1][4 k+5]}
$$

$$
=\frac{k+1}{4 k+5} \text { as required }
$$

$\therefore P_{k} \Rightarrow P_{k+1}$ i.e. $P_{1} \Rightarrow P_{2}, P_{2} \Rightarrow P_{3}$ etc.
Hence, by MI, $\sum_{r=1}^{n} \frac{1}{(4 r-3)(4 r+1)}=\frac{n}{4 n+1} \forall n \in N$.
5) (a) $9^{x}-5\left(3^{x}\right)+4=0$

$$
\begin{array}{ll}
u^{2}-5 u+4=0 & {[1 \text { mark }]} \\
(u-4)(u-1)=0 & {[1 \text { mark }]} \\
u=4, u=1 & \\
3^{x}=4,3^{x}=1 &
\end{array}
$$

$x=\frac{\ln 4}{\ln 3}, x=0 \quad[1+1$ marks $]$
(b) $\mathrm{e}^{3 x}=4-4 \mathrm{e}^{-3 x}$
$\left(\mathrm{e}^{3 x}\right)^{2}=4 \mathrm{e}^{3 x}-4 \quad$ [1 mark]
$\left(\mathrm{e}^{3 x}\right)^{2}-4 \mathrm{e}^{3 x}+4=0$
$\left(\mathrm{e}^{3 x}-2\right)\left(\mathrm{e}^{2 x}-2\right)=0 \quad[1 \mathrm{mark}]$
$\mathrm{e}^{3 x}=2$ (twice)
$\ln \left(\mathrm{e}^{3 x}\right)=\ln 2$
[1 mark]
$3 x \operatorname{lne}=\ln 2$
$x=\frac{1}{3} \ln 2$
[1 mark]
6) (i) $\mathrm{P}(t)=2+5^{t}$

When $t=0 ; P(0)=2+5^{0} \quad[1 \mathrm{mark}]$

$$
=3 \text { bacteria } \quad[1 \mathrm{mark}]
$$

(ii) $P(t)=1000000$
$1000000=2+5^{t}$
$999998=5^{t} \quad$ [1 mark]
$\ln (999$ 998) $)=\ln \left(5^{t}\right)$
[1 mark]
$\ln (999998)=t \ln 5$
$\frac{\ln 999998}{\ln 5}=t$
[1 mark]
8.58 minutes $=t$
[1 mark]
7) (i) The function f is defined by $f: x \rightarrow \ln 2 x: x \in \boldsymbol{R}, x>0$.

correct orientation [1 mark]; passing through origin [1 mark]
(ii) $f: x \rightarrow \ln 2 x$

Let $y=f(x)$
$y=\ln 2 x$
$\mathrm{e}^{y}=2 x \quad$ [1 mark]
$\mathrm{e}^{x}=2 y \quad[1 \mathrm{mark}]$
$\frac{1}{2} \mathrm{e}^{x}=f^{-1}(x) \quad$ [1 mark]
(iii) Domain of $f^{-1}, x \in \boldsymbol{R} \quad$ [1 mark]

Range of $f^{-1}, f(x)>0 \quad$ [1 mark]

$$
\text { (iv) } \begin{array}{rlr}
f g(x) & =f\left(\frac{1}{2} x-4\right) & {[1 \text { mark }]} \\
& =\ln \left[2\left(\frac{1}{2} x-4\right)\right] & \\
& =\ln [x-8] & {[1 \text { mark }]}
\end{array}
$$

8) $\begin{array}{ll}\frac{3-x}{2 x-5} \times(2 x-5)^{2} \geq 0 \times(2 x-5)^{2} & {[1 \text { mark] }} \\ (3-x)(2 x-5) \geq 0 & {[1 \text { mark] }} \\ \frac{5}{2}<x \leq 3 & {[1 \text { mark] }}\end{array}$

$$
\begin{array}{rlr}
\text { 9) } \left.\begin{array}{lll}
x+4=|2 x| & \text { OR } x+4=|2 x| \\
x+4=+\sqrt{(2 x)^{2}} & {[1 \mathrm{mark}]} & \begin{array}{l}
x+4=(+2 x) \text { or } x+4=(-2 x) \\
x=4 \text { or } 3 x=-4
\end{array} \\
\left.\begin{array}{lll}
(x+4)^{2}=(2 x)^{2} & & x=-\frac{4}{3} \\
x^{2}+8 x+16=4 x^{2} & & \text { [1+1 marks] } \\
0=3 x^{2}-8 x-16 & {[1 \text { mark] }} &
\end{array}\right] \\
0=(x-4)(3 x+4) & \text { [1 mark] } \\
x=4, x=-\frac{4}{3} & {[1+1 \text { marks] }} &
\end{array}\right]
\end{array}
$$

