UNIT 1 MODULE 2 TEST

1 hour 10 minutes

Instr	uction	ns: Answer ALL questions, giving your answers to 3 significant	figures
1.	If 90	$\beta^{\circ} < \alpha < 180^{\circ}$ with sin $\alpha = \frac{5}{13}$ and $0^{\circ} < \beta < 90^{\circ}$ with $\cos\beta = \frac{8}{17}$, find the values of form of	llue
	(a)	cosα	[2]
	(b)	$\sin eta$	[2]
	(c)		[2]
	(d)	$\sin(\alpha - \beta)$	[3]
	(e)	$\cos\left(\frac{\alpha}{2}\right)$	[3]
2.	Find the general solution of the equation		
		$\tan 3x = \sqrt{3}$	8. e. 1. e. î.
	givin	g your answers in terms of π .	[4]
3.	By e	xpressing $\tan 3\theta$ as $\tan(2\theta + \theta)$ show that $\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$	[5]
4.	(a)	Express $5\sin\theta - 2\cos\theta$ in the form R $\sin(\theta - \alpha)$ where R > 0 and	
		$0^{\circ} < \alpha < 90^{\circ}$.	[5]
	(b)	Hence state the maximum value of $5sin\theta - 2cos\theta + 3$ and the value which it occurs	ofØfer [4]
	(c)	Find the values of x for which $5\sin\theta - 2\cos\theta = 4$ for $0^\circ < \theta < 360^\circ$	[4]
5.	The	vectors m , n and p are given by $\mathbf{m} = \begin{pmatrix} r \\ 3 \\ -6 \end{pmatrix}$, $\mathbf{n} = \begin{pmatrix} 4 \\ s \\ 2 \end{pmatrix}$ and $\mathbf{p} = \begin{pmatrix} 16 \\ 3 \\ t \end{pmatrix}$.	
	(a)	If $2m + 3n = p$ find the value of r, of s and of t.	[4]
	(b)	Find a unit vector parallel to m.	[3]

- In Ms Murray's Chemistry class it was observed that three corners of a crystal were located at the points A(3, 2, 4), B(2, 4, 7) and C(4, 5, 9) relative to an origin O.
 - (a) Find, in column form, the vectors \overrightarrow{AB} and \overrightarrow{AC} . [3]
 - (b) Calculate the angle between the vectors \overrightarrow{AB} and \overrightarrow{AC} . [4]

(c) Show that
$$\begin{pmatrix} 1\\ 8\\ -5 \end{pmatrix}$$
 is perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} . [2]

7. The parametric equations for x and y are defined by

$$x = t - 2$$
 and $y = 2t^{2} + 1$

- (a) Find the Cartesian equation which connects x and y. [2]
- (b) Hence sketch the graph of the relationship for -2 < t < 4. [3]
- 8. (a) Show that the equation of the tangent to the circle x² + y² = 5 at the point (-2, 1) is y = 2x + 5. [4]
 This tangent intersects the circle x² + y² 6x 12y + 35 = 0 at points P and Q.
 (b) Calculate the coordinates of P and Q. [7]
 - (c) Show that the tangents to the second circle at P and Q are perpendicular to each other. [4]