UNIT 1 MODULE 2 TEST

1 hour 10 minutes
Instructions: Answer ALL questions, givurig your answers to 3 significant figures

1. If $90^{\circ}<\alpha<180^{\circ}$ with $\sin \alpha=\frac{5}{13}$ and $0^{\circ}<\beta<90^{\circ}$ with $\cos \beta=\frac{8}{17^{\prime}}$, find the value :in exact form of
(a) $\cos \alpha$
(b) $\sin \beta$
(c) $\cot \alpha$
(d) $\sin (\alpha-\beta)$
(e) $\cos \left(\frac{\alpha}{2}\right)$
2. Find the general solution of the equation

$$
\begin{equation*}
\tan 3 x=\sqrt{3} \tag{4}
\end{equation*}
$$

giving your answers in terms of π.
3. By expressing $\tan 3 \theta$ as $\tan (2 \theta+\theta)$ show that $\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}$
4. (a) Express $5 \sin \theta-2 \cos \theta$ in the form $R \sin (\theta-\alpha)$ where $R>0$ and

$$
\begin{equation*}
0^{\circ}<\alpha<90^{\circ} . \tag{5}
\end{equation*}
$$

(b) Hence state the maximum value of $5 \sin \theta-2 \cos \theta+3$ and the value $\cos \theta$ for which it occurs
(c) Find the values of X for which $5 \sin \theta-2 \cos \theta=4$ for $0^{\circ}<\theta<360^{\circ}$
5. The vectors m, n and p are given by $m=\left(\begin{array}{c}r \\ 3 \\ -6\end{array}\right), r_{i}=\left(\begin{array}{l}4 \\ s \\ 2\end{array}\right)$ and $p=\left(\begin{array}{c}16 \\ 3 \\ t\end{array}\right)$.
(a) If $2 m+3 n=p$ find the value of r, of s and of t.
(b) Find a unit vector parallel to m.
6. In Ms Murray's Chemistry class it was observed that three corners of a crystal were located at the points $A(3,2,4), B(2,4,7)$ and $C(4,5,9)$ relative to an origin 0 .
(a) Find, in column form, the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(b) Calculate the angle between the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(c) Show that $\left(\begin{array}{c}1 \\ 8 \\ -5\end{array}\right)$ is perpendicular to both $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
7. The parametric equations for x and y are defined by

$$
x=t-2 \text { and } y=2 t^{2}+1
$$

(a) Find the Cartesian equation which connects x and y.
(b) Hence sketch the graph of the relationship for $-2<t<4$.
8. (a) Show that the equation of the tangent to the circle $x^{2}+y^{2}=5$ at the point $(-2,1)$ is $y=2 x+5$.
This tangent intersects the circle $x^{2}+y^{2}-6 x-12 y+35=0$ at points P and Q.
(b) Calculate the coordinates of P and Q.
(c) Show that the tangents to the second circle at P and Q are perpendicular to each other.

