```
HC SBA TEST. UNIT 1 TEST2 (2OIB)
```

UNIT 1 - TEST 2
1 hour 30 minutes

This examination paper consists of 2 printed pages.
This paper consists of 3 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used.
(ii) Answer All questions.
(iii) . Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other.
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED
(i) Mathematical formulae
(ii) Scientific calculator (non-programmable, non-graphical)

1. (a) The path of a projectile can be modelled by the parametric equations

$$
x=2 t ; \quad y=7 t-5 t^{2}
$$

Write the path of the projectile in the form $y=a x^{2}+b x$ where a and b are real numbers.
(b) A point moves so that at time t the distances from the coordinate axes are given by

$$
x=-2+3 \sin t ; \quad y=4+2 \cos t
$$

(i) Determine the maximum value of x and the minimum value of y.
(ii) Determine the Cartesian equation of the curve traced by the point.
(c)

In the diagram above, not drawn to scale, $C(2,1)$ is the centre of the circle, $D_{1,}$, and $A(5,5)$ is a point on the circle. Determine
i. the length of the radius of the circle.
ii. the equation of the circle in the form $(x-h)^{2}+(y-k)^{2}=r^{2}$.
iii. the equation of the tangent to the circle at the point A.

Another circle, D_{2}, with equation $x^{2}+y^{2}-10 x+4 y=8$ intersects D_{1} at H and G.
iv. Determine the coordinates of H and G.
2. The quadrilateral $A B C D$ has vertices $A(1,3,4), B(5,3,0), C(1,1,5)$ and $D(7,2,-1)$. The line L has vector equation $r=\left(\begin{array}{l}5 \\ 2 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.
(a) (i) Find the vector $\overrightarrow{A B}$.
(ii) Show that the line $A B$ is parallel to L.
(iii) Verify that D lies on L.
(b) The line M passes through $D(7,2,-1)$ and $E(9,2,3)$.
(i) Find the vector equation of M.
(ii) Find the angle between M and $A C$.
(c) Given that the vector $2 i+j+2 k$ is perpendicular to the plane $A B C D$, determine, in the form $r . n=d$, the equation of the plane $A B C D$.
3. (a) The intensity of a bright spotlight on a certain point on a stage is given by $I=\frac{k \tan \theta}{d^{2} \sec \theta}$. In the formula, k is a constant and d is the distance from the spotlight to that point of the stage at which I is measured. Show that $I=\frac{k \sin \theta}{d^{2}}$.
(b) (i) Express $\sqrt{3} \sin x+\cos x$ in the form $R \sin (x+\alpha)$, where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) Show that the equation $\sqrt{3} \sec x+\csc x=4$ can be written in the form

$$
\begin{equation*}
\sqrt{3} \sin x+\cos x=2 \sin 2 x \tag{3}
\end{equation*}
$$

(iii) Deduce from parts (a) and (b) that $\sqrt{3} \sec x+\csc x=4$ can be written in the form

$$
\begin{equation*}
\sin 2 x-\sin \left(x+\frac{\pi}{6}\right)=0 \tag{2}
\end{equation*}
$$

(iv) Hence, using the identity $\sin X-\sin Y=2 \cos \left(\frac{x+Y}{2}\right) \sin \left(\frac{x-Y}{2}\right)$, or otherwise, find the values of x in the interval $0 \leq x \leq \pi$, for which $\sqrt{3} \sec x+\csc x=4$.

