HC SBA TEST. UNIT 1 TEST 2 (2013)

UNIT 1 – TEST 2 1 hour 30 minutes

This examination paper consists of 2 printed pages.

This paper consists of 3 questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

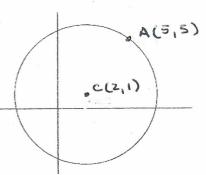
- (i) Write your name clearly on each sheet of paper used.
- (ii) Answer ALL questions.
- (iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other.
- Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, MUST be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

(i) Mathematical formulae

(ii) Scientific calculator (non-programmable, non-graphical)

1. (a) The path of a projectile can be modelled by the parametric equations


x = 2t; $y = 7t - 5t^2$ Write the path of the projectile in the form $y = ax^2 + bx$ where *a* and *b* are real numbers. [3]

- (b) A point moves so that at time t the distances from the coordinate axes are given by $x = -2 + 3 \sin t; \quad y = 4 + 2 \cos t$
 - (i) Determine the maximum value of *x* and the minimum value of *y*.
 - (ii) Determine the Cartesian equation of the curve traced by the point. [3]

[2]

[8]

(C)

In the diagram above, not drawn to scale, C(2, 1) is the centre of the circle, D_1 , and A(5, 5) is a point on the circle. Determine

i.the length of the radius of the circle.[2]ii.the equation of the circle in the form $(x - h)^2 + (y - k)^2 = r^2$.[2]iii.the equation of the tangent to the circle at the point A.[4]

Another circle, D_2 , with equation $x^2 + y^2 - 10x + 4y = 8$ intersects D_1 at H and G.

iv. Determine the coordinates of *H* and *G*.

2.	The quadrilateral <i>ABCD</i> has vertices $A(1, 3, 4)$, $B(5, 3, 0)$, $C(1, 1, 5)$ and $D(7, 2, -1)$. The line L		
	has vector equation $r = \begin{pmatrix} 5\\2\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\0\\-1 \end{pmatrix}$.		
	(a) (i) Find the vector \overrightarrow{AB} .	[2]	
	(ii) Show that the line <i>AB</i> is parallel to <i>L</i> .	[2]	
	(iii) Verify that D lies on L.	[2]	
	(b) The line M passes through $D(7, 2, -1)$ and $E(9, 2, 3)$.		
	(i) Find the vector equation of M .	[2]	
	(ii) Find the angle between <i>M</i> and <i>AC</i> .	[5]	
	(c) Given that the vector $2i + j + 2k$ is perpendicular to the plane <i>ABCD</i> , determine, in the	[0]	
	form $r, n = d$, the equation of the plane <i>ABCD</i> .	[3]	
3.	a) The intensity of a bright spotlight on a certain point on a stage is given by $I = \frac{k \tan \theta}{d^2 \sec \theta}$. In the		
	formula, k is a constant and d is the distance from the spotlight to that point of the stage at		
	which I is measured. Show that $I = \frac{k \sin \theta}{d^2}$.	[3]	
	(b) (i) Express $\sqrt{3} \sin x + \cos x$ in the form $R \sin(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$.	[4]	
	(ii) Show that the equation $\sqrt{3} \sec x + \csc x = 4 \tan be$ written in the form		
	$\sqrt{3}\sin x + \cos x = 2\sin 2x$		
		[3]	
	(iii) Deduce from parts (a) and (b) that $\sqrt{3} \sec x + \csc x = 4$ can be written in the form		
	$\sin 2x - \sin \left(x + \frac{\pi}{6} \right) = 0$		
		[2]	
	(iv) Hence, using the identity $\sin X - \sin Y = 2\cos\left(\frac{X+Y}{2}\right)\sin\left(\frac{X-Y}{2}\right)$, or otherwise, find the		
	values of x in the interval $0 \le x \le \pi$, for which $\sqrt{3} \sec x + \csc x = 4$.	[8]	

END OF EXAMINATION