HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2012 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 1 – TEST 1 1 hour 20 minutes

This examination paper consists of 2 printed pages.

This paper consists of 9 questions.

The maximum mark for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper used
- (ii) Answer ALL questions
- (iii) Number your questions carefully and do **NOT write your solutions to different questions** beside each other
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

- (i) Mathematical formulae
- (ii) Scientific calculator (non-programmable, non-graphical)

1. Express
$$\frac{8\sqrt{3}-1}{2^2+\sqrt{3}}$$
 in the form $a+b\sqrt{3}$ where a and b are real numbers. [5]

Total 5 marks

2. Prove by mathematical induction that
$$\sum_{r=1}^{n} \frac{1}{(2r-1)(2r+1)} = \frac{n}{2n+1} \,\forall n \in \mathbb{Z}^{+}.$$
 [8]

Total 8 marks

- 3. Given that -1 and 2 are two roots of the equation $x^3 + px^2 + x + q = 0$.
 - (i) Find the values of p and q [4]
 - (ii) Hence find the other root of the equation. [3]

 Total 7 marks
- 4. Solve for y, the equations
 - (a) $16^{y} = 2^{2y+3}$
 - (b) $\log_5 y^4 + \log_y 5 = 4$ [6]

Total 9 marks

- 5. A renewable energy supplier finds that when x millions of dollars are spent on research the profit, P(x), in millions of dollars, is given by $P(x) = 2 + \log_{10}(x+3)$.
 - Calculate how much should be spent on research to make a profit of 4 million dollars. [4]

 Total 4 marks

6. The function f is defined by $f: x \to 1 + 4x - x^2, x \ge 2, x \in \mathbb{R}$.	
(i) Express f in the form $k + a(x + h)^2$, where a, h and k are constants	[4]
(ii) Sketch the graph of f	[2]
(iii) State the range of f	[1]
(iv) Giving a reason to support your answer, state whether f is	
(a) injective	[2]
(b) surjective	[2]
(c) bijective.	[2]
	Total 13 marks
7. The equation $2x^2 + 4x - 3 = 0$ has real roots α and β . Without solving the find the equation whose roots are α^2 and β^2 .	[5]
22	Total 5 marks
8. Solve for $x, x \ne 1, \frac{3-2x}{x-1} < 0$	[5]
	Total 5 marks
9. Find the range of values of x such that $ 4-3x \le x$, and $x > 0$.	[4]
	Total 4 marks
END OF TEST	