PURE MATHEMATICS
 UNIT 1 - TEST 3 (PREVIEW)

TIME: 1 Hour \& 20 minutes

1. (a) Find $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
(b) Find $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{3 x}$
(c) The function f on \mathbb{R} is defined by

$$
f(x)= \begin{cases}\frac{x^{2}+3 x-10}{x-2}, & \text { if } x \neq 2 \\ k x+1, & \text { if } x=2\end{cases}
$$

Find the value of the constant k that makes f continuous at $x=2$.
(d) Let $y=x^{-2}$. Using first principles, find $\frac{d y}{d x}$.
2. (a) Find $f^{\prime}(x)$ when:
(i) $f(x)=\sqrt{\left(x^{2}-4\right)}$
(ii) $f(x)=\frac{3 x}{\sin 2 x}$
(b) A manufacturer wants to manufacture cylindrical aluminium cans with a volume of 2000 cm^{3}. The cans are closed. Let R be the internal radius and h be the internal height of the tub.
(i) Express h in terms of R.
(ii) Show that the internal surface area $A \mathrm{~cm}^{2}$ is given by

$$
\begin{equation*}
A=\frac{4000}{R}+2 \pi R^{2} \tag{3}
\end{equation*}
$$

(iii) Hence determine the value of R which minimises the amount of material to be used.
(c) A curve is defined by the parametric equations

$$
x=5 t-4 \quad y=1-\frac{3}{t}
$$

(i) Find $\frac{d y}{d x}$ in terms of t.
(ii) Find the equation of the tangent to the given curve at the point where $t=1$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
3. (a) The gradient of a curve is given by $\frac{d y}{d x}=(3 x-4)^{-2}$. The point $(0,1)$ lies on the curve. Find the equation of the curve.
(b) (i) Find $\int_{0}^{1} \cos (2-x) d x$. Give your answer to 2 decimal places.
(ii) Using the substitution $u=x^{2}-1$, find

$$
\begin{equation*}
\int_{1}^{2} 2 x\left(x^{2}-1\right)^{3} d x \tag{5}
\end{equation*}
$$

(c) Find the shaded area in the diagram below which is bounded by the graph of $f(x)=\sin 3 x+x$, the x-axis and the lines $x=0$ and $x=\frac{\pi}{3}$.
Give your answer to 2 decimal places

(d) Solve the differential equation $\frac{d y}{d x}=2 \frac{x^{3}}{y}$ given that $y=2$ when $x=1$.

TOTAL 23 marks

