HARRISON COLLEGE INTERNAL EXAMINATION APRIL 2014
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 3
 1 hour 30 minutes

This examination paper consists of 2 printed pages.
This paper consists of 3 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other.
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1. (a) Find
(i) $\quad \lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-x-2}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin 5 x}$
(iii) the value(s) of x for which $f(x)=\frac{4}{x^{2}-16}$ is discontinuous.
) The function f on \mathbb{R} is defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-2 x+3, & x<3 \\
4 x-6, & x \geq 3
\end{array}\right.
$$

(i) Find

$$
\begin{equation*}
\lim _{x \rightarrow 3} f(x) \tag{4}
\end{equation*}
$$

(ii) Determine whether $f(x)$ is continuous at $x=3$. Give a reason for your answer. [2]
(c) (i) Given that $f(x)=x^{2}$, determine $f(x+h)$.
(ii) Hence differentiate $f(x)=\frac{1}{x^{2}}$ from first principles.
2. (a) Determine $f^{\prime}(x)$ for each of the following
(i) $\quad f(x)=(2 x-1)\left(x^{2}+5\right)^{3}$
(ii) $\quad f(x)=\cos \left(x^{2}\right)-\tan (x-5)$
(b) The curve $y=2 x+\frac{8}{x}$ passes through the point $A(4,10)$.

Determine
(i) the equation of the normal to the curve at A.
(ii) the coordinates of the stationary point(s) on the curve.
(iii) the nature of the stationary point(s).
3. (a) The oscillations of a 'baby bouncy cradle' are modelled by the differential equation

$$
\frac{d y}{d t}=\frac{150 \cos 2 t}{y}
$$

where $y \mathrm{~cm}$ is the height of the cradle above its base t seconds after the cradle begins to oscillate. Given that the cradle is 20 cm above its base at time $t=\frac{\pi}{4}$ seconds, show that the particular solution of the differential equation is

$$
\begin{equation*}
y^{2}=150 \sin 2 t+250 \tag{5}
\end{equation*}
$$

(b) Using the substitution $u=2 x^{3}-5$, evaluate

$$
\begin{equation*}
\int(6 x)^{2}\left(2 x^{3}-5\right)^{4} d x \tag{5}
\end{equation*}
$$

(c)

The diagram above shows a portion of the graph of $f(x)=x^{3}-2 x^{2}-x+2$. The graph cuts the x-axis at $(-1,0),(1,0)$ and $(2,0)$. Determine the area bounded by $f(x)$, the x-axis and the lines $x=0$ and $x=2$.

End of Examination

