```
UNIT 1 - TEST 3 (2012)
```

This examination paper consists of 2 pages.
This paper consists of 4 questions.
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Do NOT do questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. a) Given that $f(x)=\left\{\begin{array}{l}x^{2}-2, \text { if } x \leq 0 \\ 3 x+k, \text { if } x>0\end{array}\right.$
i. Evaluate $\lim _{x \rightarrow 0^{-}} f(x)$
ii. Find the value for the constant k that will make the function continuous at $x=0$. [2]
b) Evaluate the limits
i. $\lim _{x \rightarrow \infty}\left(\frac{x^{3}-2 x+3}{6-4 x^{2}-3 x^{3}}\right)$
ii. $\lim _{\theta \rightarrow 0} \frac{\sin 6 \theta}{\sin 5 \theta}$
c) Evaluate $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$

Hence, find
i. The gradient of the tangent to $f(x)=x^{2}$ when $x=2$
ii. The equation of the normal at $x=2$
2. a) Determine the derivative of $h(x)=3 x^{2} \sin ^{3}(2 x)$.
b) Given that $f(1)=1, g(1)=-2, f^{\prime}(1)=3$ and $g^{\prime}(1)=-1$.

$$
\begin{equation*}
\text { Find } \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) \text { when } x=1 \tag{5}
\end{equation*}
$$

3. a) A curve has equation $y=x^{4}-32 x+7$
i. Find the x-coordinate of the stationary point of the curve.
ii. State whether the stationary point is a maximum or minimum point.
iii. Hence state the set of values of x for which $x^{4}-32 x+7$ is a decreasing function.
b) A smail water balloon was projected vertically upward by a disgruntled calculus student. It reached an elevation of $s=160 t-16 t^{2}$ feet at the end of t seconds. What is the maximum beight the balloon reaches?
4. a) Evaluate
i. $\int(\sqrt{\theta}-\cos \theta) d \theta$
ii. $\int\left(4 q^{3}-q^{2}+q\right) d q$
b) Using the substitution $u=3 x+2$, find $\int(3 x+2)^{4} d x$
c) The curve below has the equation $y=3 x-x^{2}$.

i. Calculate the area of the shaded region shown for the curve $y=3 x-x^{2}$ between $x=1$ and $x=2$.
ii. Find the volume of the solid generated when the area bounded by, the x axis and the lines $x=1$ and $x=2$ is rotated through 360° about the x-axis. State your answer in terms of π.
