This examination paper consists of 2 pages. This paper consists of 4 questions.

The maximum marks for this examination is 60.

INSTRUCTIONS TO CANDIDATES

UNIT 1 - TEST 3 (2012)

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer ALL questions.
- 3. Do NOT do questions beside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

- 1. Mathematical formulae sheet
- 2. Scientific Non-programmable calculator (non-graphical)
- 1. a) Given that $f(x) = \begin{cases} x^2 2, & \text{if } x \le 0 \\ 3x + k, & \text{if } x > 0 \end{cases}$
 - i. Evaluate $\lim_{x \to 0^{-}} f(x)$ [2]
 - ii. Find the value for the constant k that will make the function continuous at x = 0. [2]
 - b) Evaluate the limits

i.
$$\lim_{x \to \infty} \left(\frac{x^3 - 2x + 3}{6 - 4x^2 - 3x^3} \right)$$
 [3]

ii.
$$\lim_{\theta \to 0} \frac{\sin 6\theta}{\sin 5\theta}$$
[4]

c) Evaluate
$$\frac{\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}}{h}$$
 [5]

Hence, find

	TPL It C.I	c(.) .7 1	513
1.	The gradient of the tangent to	$f(x) = x^2$ when $x = 2$	[1]

[5]

- ii. The equation of the normal at x = 2
- 2. a) Determine the derivative of $h(x) = 3x^2 \sin^3(2x)$. [3]
 - b) Given that f(1) = 1, g(1) = -2, f'(1) = 3 and g'(1) = -1.

Find
$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)$$
 when $x = 1$ [5]

3. a) A curve has equation $y = x^4 - 32x + 7$

i.	Find the x-coordinate of the stationary point of the curve.	[4]			
ii.	State whether the stationary point is a maximum or minimum point.	[2]			
ііі.	Hence state the set of values of x for which $x^4 - 32x + 7$ is a decreasing function.	[1]			
small water balloon was projected vertically unward by a discruptled calculus student					

b) A small water balloon was projected vertically upward by a disgruntled calculus student. It reached an elevation of $s = 160t - 16t^2$ feet at the end of t seconds. What is the maximum height the balloon reaches? [5]

4. a) Evaluate

i. $\int (\sqrt{\theta} - \cos \theta) d\theta$ [2]

ii.
$$\int (4q^3 - q^2 + q) dq$$
 [3]

- b) Using the substitution u = 3x + 2, find $\int (3x + 2)^4 dx$ [4]
- c) The curve below has the equation $y = 3x x^2$.

i. Calculate the area of the shaded region shown for the curve $y = 3x - x^2$ between x = 1 and x = 2.

[4]

ii. Find the volume of the solid generated when the area bounded by, the x axis and the lines x = 1 and x = 2 is rotated through 360° about the x-axis. State your answer in terms of π. [5]