HARRISON COLLEGE INTERNAL EXAMINATION 2011 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION

SCHOOL BASED ASSESSMENT

PURE MATHEMATICS

UNIT 1 - TEST 3

TIME: 1 Hour \& 20 minutes

This examination paper consists of 2 printed pages.
The paper consists of 6 questions.
The maximum mark for this examination is 60

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer ALL questions.
3. Number your questions carefully and do NOT write your solutions to different questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae
2. Electronic calculator (non-programmable, non-graphical)
3. (a)
(i) Determine the following limit: $\lim _{x \rightarrow 0} \frac{3 \sin 2 x}{x}$
(ii) Given that $\lim _{x \rightarrow-2}[4 f(x)]=12$
evaluate $\quad \lim _{x \rightarrow-2}[f(x)-2 x]$
(b) The position of a portion of the railings of a bridge can be modelled with the following function:

$f(x)=\left\{\begin{array}{cc}\frac{9}{4} x+\frac{45}{4} & -5 \leq x \leq-4 \\ \frac{9}{4} & -4<x \leq-1 \\ -\frac{9}{4} x & -1<x \leq 0 \\ -\frac{1}{4}(x-3)^{2}+\frac{9}{4} & 0<x \leq 6\end{array}\right\}$
(i) Draw a sketch of the graph of $f(x)$.
(ii) Find $\lim _{x \rightarrow-1^{+}} f(x)$
(iii) Is the function f differentiable at $x=-1$? Explain your answer.
(c) Determine from first principles, the derivative with respect to x, of $y=\sqrt{2 x}$.
4. (a) Find the equation of the normal to the curve $y=2 x^{3}-4 x^{2}+9$ at the point where $x=3$.
(b) Find $\frac{d y}{d x}$ when:
(i) $y=x \sqrt{x^{2}-1}$
(ii) $y=\frac{\sin ^{2} x}{x^{2}}$
5. Oil is leaking at a constant rate to form a circular puddle on the floor. The oil is being added to the puddle at the rate of $10 \mathrm{~mm}^{3}$ per minute causing the puddle to spread out evenly with constant depth 2 mm .

When the radius of the puddle is $r \mathrm{~mm}$, the volume is $V \mathrm{~mm}^{3}$ of oil is given by $V=2 \pi r^{2}$.

Find the rate of change of the radius of the puddle when the radius is 30 mm . (Give an exact answer with units of mm per minute).
4. For the function $f(x)=x-\frac{6}{x}+\frac{9}{x^{3}}, x \neq 0$, determine
(i) the \boldsymbol{x} coordinates of the stationary points,
(ii) the nature of each of the stationary points.
5. (i) Find $\int\left[\tan ^{2} x+\cos (3 x)\right] d x$
(ii) Using the substitution $u=x^{2}-1$, find

$$
\begin{equation*}
\int \frac{3 x}{\left(x^{2}-1\right)^{2}} d x \tag{4}
\end{equation*}
$$

6.

Determine the exact volume of the solid formed if the area enclosed between the two curves

$$
4 x^{2}+y^{2}=4 \quad \text { and } \quad x^{2}+y^{2}=1
$$

is rotated by 2π radians about the x-axis.

