$H C S B A$ NNIT TEST I (2OII)
The maximum marks for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

1. Write your name clearly on each sheet of paper used.
2. Answer $\mathbf{A L L}$ questions.
3. Do NOT do questions beside one another.
4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet
2. Scientific Non-programmable calculator (non-graphical)
3. a) The equation of a circle is $x^{2}+y^{2}-3 x-4=0$

Find
i. the coordinates of its centre
ii. its radius
iii. the coordinates of the points at which it cuts the axes
b) Three points have coordinates $A(2,9), B(4,3)$ and $C(2,-5)$ as shown below. The line through C with gradient $\frac{1}{2}$ meets the line $A B$ which is produced to D.

i. Show that the coordinate of D is $(6,-3)$
ii. Hence, find the equation of the line through D which is perpendicular to the line $5 y-4 x=17$.
2. Given that $a=\binom{4}{-3}, b=\binom{2}{4}, c=\binom{22}{-11}$, find
i. A unit vector in the direction of a
ii. The value of the constants m for which $m a+b=c$
iii. Determine the angle between a and b.

Total 8 marks
3. A coin is made by starting with an equilateral triangle $A B C$ of side 2 cm . With centre A, an arc of a circle is drawn joining B to C. Similar arcs join C to A and A to B.

Find, leaving your answers as exact values in terms of π
a. the perimeter of the coin
b. the area of one of the coins' faces
4. a) A and B are acute angles such that $\sin A=\frac{2}{3}$ and $\tan B=\frac{3}{4}$. Without using a calculator and leaving your answers in surd form, find the value of

$$
\begin{array}{rr}
\text { i. } & \sin (A+B) \\
\text { ii. } & \cos (A+B) \tag{2}
\end{array}
$$

b) i. Prove that $\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta} \equiv \cos ^{2} \theta$
ii. Hence, or otherwise, find the solutions in the range $-180^{\circ} \leq \theta \leq 180^{\circ}$ of the equation $\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta}=2 \cos 2 \theta$.

Totall 16 marks

5. Most water fountains have water jets that shoot water into the air to create parabolic arcs. When a stream of water is shot into the air at an angle of θ with the horizontal, then water will travel a horizontal distance of $D=\frac{v^{2}}{g} \sin 2 \theta$ and reach a maximum height of $H=\frac{v^{2}}{2 g} \sin ^{2} \theta$, where g is the acceleration due to gravity.
a) Express the ratio of the maximum height of the water to the horizontal distance it travels, $\frac{H}{D}$, as a function in terms of $\tan \theta$.
b) Show that the ratio of the maximum height of the water to the horizontal distance it travels for an angle of 30° is $\frac{\sqrt{3}}{12}$.
