HC SBA UNITH TEST (2011)The maximum marks for this examination is 60.

INSTRUCTIONS TO CANDIDATES

- 1. Write your name clearly on each sheet of paper used.
- 2. Answer ALL questions.
- 3. Do NOT do questions beside one another.
- 4. Unless otherwise stated in the question, any numerical answer that is not exact MUST be written correct to three (3) significant figures.

EXAMINATION MATERIALS ALLOWED

1. Mathematical formulae sheet

- 2. Scientific Non-programmable calculator (non-graphical)
- 1. a) The equation of a circle is $x^2 + y^2 3x 4 = 0$

Find

i.	the coordinates of its centre	[3]
ii.	its radius	[1]
iii.	the coordinates of the points at which it cuts the axes	[7]

b) Three points have coordinates A(2,9), B(4,3) and C(2,-5) as shown below. The line through C with gradient $\frac{1}{2}$ meets the line AB which is produced to D.

i. Show that the coordinate of D is (6, -3) [9]
ii. Hence, find the equation of the line through D which is perpendicular to the line 5y - 4x = 17. [3]

Total 23 marks

PLEASE TURN OVER

2.	Given that a	$= \begin{pmatrix} 4 \\ -3 \end{pmatrix}, \ b = \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \ c = \begin{pmatrix} 22 \\ -11 \end{pmatrix}, \text{ find}$	
	i .	A unit vector in the direction of a	[3]
	İİ.	The value of the constants m for which $ma + b = c$	[2]
	iii	Determine the angle between a and b .	[3]

Total 8 marks

3. A coin is made by starting with an equilateral triangle ABC of side 2 cm. With centre A, an arc of a circle is drawn joining B to C. Similar arcs join C to A and A to B.

Find, leaving your answers as exact values in terms of π

a. the perimeter of the coin
b. the area of one of the coins' faces
[7]
Total 9 marks

4. a) A and B are acute angles such that $\sin A = \frac{2}{3}$ and $\tan B = \frac{3}{4}$. Without using a calculator and leaving your answers in surd form, find the value of

i.	sin(A+B)						[5]
11.	cos(A+B)		2		×.*	an de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	[2]

b) i. Prove that
$$\frac{\cot^2\theta}{1+\cot^2\theta} \equiv \cos^2\theta$$
 [3]

ii. Hence, or otherwise, find the solutions in the range $-180^\circ \le \theta \le 180^\circ$ of the equation $\frac{\cot^2\theta}{1+\cot^2\theta} = 2\cos 2\theta$. [6]

Total 16 marks

- 5. Most water fountains have water jets that shoot water into the air to create parabolic arcs. When a stream of water is shot into the air at an angle of θ with the horizontal, then water will travel a horizontal distance of $D = \frac{v^2}{g} \sin 2\theta$ and reach a maximum height of
 - $H = \frac{v^2}{2g} \sin^2 \theta$, where g is the acceleration due to gravity.
 - a) Express the ratio of the maximum height of the water to the horizontal distance it travels, $\frac{H}{D}$, as a function in terms of $\tan \theta$. [3]
 - b) Show that the ratio of the maximum height of the water to the horizontal distance it travels for an angle of 30° is $\frac{\sqrt{3}}{12}$. [1]