HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2014
 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 1
 1 hour 30 minutes

This examination paper consists of 2 printed pages.
This paper consists of 9 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(a) Mathematical formulae
(b) Scientific calculator (non-programmable, non-graphical)

1) Given that p and q are propositions, use the algebra of propositions to show that $(p \wedge q) \vee(\sim p \wedge q) \equiv q$
2) (i) Evaluate $\sum_{r=1}^{500}(3 r+2)$.
(ii) Given that $\sum_{r=1}^{n}(a r+b)=n^{2}$, find the constants a and b.
3) (a) The sketch below, not drawn to scale, shows part of the graph of $y=x^{3}+p x^{2}+q x+r$, where p, q and r are constants.

Please Turn Over

The points A, B and C have coordinates $(-2,0),(2,0)$ and $(4,0)$ respectively.
The curve crosses the y-axis at D.
(i) Evaluate p, q and r.
(ii) Determine the coordinates of D.
(b) Given the polynomial $f(x)=x^{3}-2 x^{2}-x+2$, solve $f(x)=0$ for $x \in \boldsymbol{R}$.
4) Prove by mathematical induction that $\sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)}=\frac{n}{2 n+1} \forall n \in Z^{+}$.
5) (a) By using the substitution $u=2^{x}$, solve the equation $4^{x}-10\left(2^{x}\right)+16=0$.
(b) Solve for x the equation $\mathrm{e}^{2 x}+4 \mathrm{e}^{-2 x}=4$, giving your answer in terms of \ln.
6) The population of a town at the beginning of the year 2000 was 2400 .

The population increased so that, after a period of n years, the new population was $2400(1.06)^{n}$. Calculate estimates of
(i) the population at the beginning of 2010
(ii) the year in which the population is expected to first reached 7000 .
7) The function f is defined by $f: x \rightarrow \ln (x+1)$: $x \in \mathbb{R}, x>-1$.
(i) Sketch the graph of f, showing clearly any intersection with the axes.
(ii) Determine an expression for the inverse function, $f^{-1}(x)$.
(iii) State the domain, and the range of $f^{-1}(x)$.

The function g is defined by $g: x \rightarrow x-1, x \in \boldsymbol{R}$.
(iv)Determine $f g(x)$.
8) Find the range of values of $x \in \boldsymbol{R}$ for which $\frac{x-2}{x-3} \leq 0, x \neq 3$
9) Solve for $x \in \mathbb{R}, x=|3 x|-2$

End of Test

