HARRUSON COLLEGE INTERNAL EXAMINATION MARCH 2013
 CARIBBEAN ADVANCED PROFICLENCY EXAMINATION
 SCHOOL BASED ASSESSMENT
 PURE MATHEMATICS
 UNIT 1 - TEST 1
 1 hour 30 minutes

This examination paper consists of 2 printed pages.
This paper consists of 9 questions.
The maximum mark for this examination is 60 .

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper used
(ii) Answer ALL questions
((iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

(i) Mathematical formulae
(ii) Scientific calculator (non-programmable, non-graphical)

1. Use a truth table to determine whether the statement $\sim p \vee p$ is a tautology or a contradiction.

Total 3 marks
2. Express $\frac{5 \sqrt{2}+1}{2-\sqrt{2}}$ in the form $p+q \sqrt{2}$ where p and q are real numbers.

Total 5 marks
3. Prove by mathematical induction that $\sum_{r=1}^{n} r(r+1)=\frac{1}{3} n(n+1)(n+2) \forall n \in Z^{+}$.

Total 8 marks
4. The function $f(x)=2 x^{3}+5 x^{2}+a x-6$, where a is a constant, has $(x+2)$ as a factor.
(a) (i) Find the value of a.
(ii) When a has this value, find all the other roots of the equation $f(x)=0$.
(b) Factorise completely $2 x^{3}-54$
5. Solve, giving the exact value(s) of $x \in R$, the equation $2 e^{2 x}+e^{x}-10=0$.
6. The heat supplied by a solar panel is modelled by the equation $h(t)=2+\log _{10}(t+3)$, where $h(t)$ is the amount of heat, in Joules, supplied at time t minutes after 5.00 a.m.

Calculate

(i) the amount of heat supplied by the panel at 6.37 a.m.
(ii) the length of time it takes, in minutes, for the panel to supply 5 joules of heat.
7. The function f is defined by $f: x \rightarrow 2 x^{2}+4 x-1, x \geq-1, f(x) \geq-3,(x, f(x)) \in \boldsymbol{R}$.
(i) Express f in the form $a(x+h)^{2}+k$, where a, h and k are constants
(ii) Sketch the graph of f
(iii) State the range of f
(iv) Giving a clear and concise reason to support your answer, state whether f
(a) is injective
(b) is surjective
(c) is bijective.
(d) has an inverse.
8. Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ if α, β and γ are the roots of the cubic equation
$4 x^{3}-2 x^{2}+5 x+6=0$
Total 4 marks

