

# END OF YEAR EXAMINATION <br> FOURTH YEAR MATHEMATICS 

## PAPER 02

## DURATION: 2 Hours

## INSTRUCTIONS TO CANDIDATES

1) This question paper consists of SIX printed pages and 10 questions.
2) Write your name clearly on $\mathbf{E A C H}$ sheet of paper used.
3) All questions are to be attempted.
4) All working must be clearly shown.
5) Number your responses carefully and identically (including any associated parts) as they appear on the question paper.

DO NOT WRITE ANY responses beside each other.
6) Calculators are allowed.
7) If a numerical answer cannot be given exactly, and the accuracy required is not specified in the question, then in the case of an angle, it must be given correct to one (1) decimal, and in others cases it must be given correct to three (3) significant figures.
8) The maximum mark for this examination is 85 .

## CSEC Mathematics <br> LIST OF FORMULAE

Volume of Prism $\quad V=A h$ where $A$ is the area of a cross-section and $h$ is the perpendicular length.

Volume of Cylinder $\quad V=\pi r^{2} h$ where $r$ is the radius of the base and $h$ is the perpendicular height.

Volume of a right pyramid $\quad V=\frac{1}{3} A h$ where $A$ is the area of the base and $h$ is the perpendicular height.

Circumference $\quad C=2 \pi r$ where $r$ is the radius of the circle.

Arc length $\quad S=\frac{\theta}{360} \times 2 \pi r$ where $\theta$ is the angle subtended by the arc, measured in degrees.

Area of a circle $\quad A=\pi r^{2}$ where $r$ is the fadius of the circle.

Area of a sector $A=\frac{\theta}{360} \times \pi r^{2}$ where $\theta$ is the angle of the sector, measured in degrees.

Area of Trapezium $\quad A=\frac{1}{2}(a+b) h$ where $a$ and $b$ are the lengths of the parallel sides and $h$ is the perpendicular distance between the parallel sides.

Roots of quadratic equations

$$
\text { If } a x^{2}+b x+c=0 \text {, then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Trigonometric ratios $\sin \theta=\frac{\text { opposite side }}{\text { hypotemuse }}$

$$
\cos \theta=\frac{\text { adjacent } \text { side }}{\text { hypotenuse }}
$$


$\tan \theta=\frac{\text { opposute }}{\text { adjacente side }}$

Area of a triangle Area of $\Delta=\frac{1}{2} b h$ where $b$ is the length of the base and $h$ is the perpendicular height

Area of $\triangle A B C=\frac{1}{2} a b \sin C$
Area of $\triangle A B C=\sqrt{s(s-a)(s-b)(s-c)}$
where $s=\frac{a+b+c}{2}$


Sine rule
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

1. A survey was conducted among 40 households. The results were:

30 owned laptops (L)
28 owned desktops (D)
$3 x$ owned both laptops and desktops
$x$ owned neither
i) Draw a Venn diagram to represent the information given above.
ii) Write an expression, in $x$, to represent the TOTAL number of households in the survey.
iii) Calculate the value of $x$.
iv) Determine the number of households which own laptops only.
2. Factorise the following completely:
a) $12 a b-16 a c$
b) $4 x^{3} y-9 y^{3} x$
c) $2 x^{2}+4 x y-x-2 y$
d) $6 x^{2}-17 x+12$
3. Solve the following equations:
a) $5 x^{2}+2 x=0$
b) $4 x^{2}=7 x-3$
c) $(x+1)(x-10)+30=0$
d) $3 x^{2}-4 x-13=0$ correct to 2 decimal places
4. Given that $f(x)=6 x^{2}-10 x-3$
i) Write $f(x)$ in the form $f(x)=a(x+h)^{2}+k$, where $a, h$ and $k \in \mathbb{R}$.
ii) State the equation of the axis of symmetry.
iii) State the coordinates of the minimum point.
5. The position vectors of the points $R, S$ and $T$ relative to the origin are

$$
\overrightarrow{O R}=\binom{7}{8}, \overrightarrow{O S}=\binom{-2}{3} \text { and } \overrightarrow{O T}=\binom{6}{-4}
$$

i) Express in the form $\binom{a}{b}$ the vectors
a) $\overrightarrow{R T}$
b) $\overrightarrow{S R}$
ii) The point $F$ is such that $R F=F T$. Use a vector method to determine the coordinates of the point $F$.
6. Solve the pair of simultaneous equations

$$
\begin{aligned}
& y+4 x=27 \\
& x y+x=40
\end{aligned}
$$

Total 6 marks
7. Make $r$ the subject of the following formulae:
a) $p=4 r+6 t$
[2]
b) $\sqrt{p r}=\frac{3 g}{h+2}$
c) $R=\frac{2 r-1}{3 r+2}$
8. The functions $f$ and $g$ are defined by

$$
f(x)=6 x+8 ; g(x)=\frac{x-2}{3}
$$

i) Calculate the value of $g\left(\frac{1}{2}\right)$.
ii) Write an expression for $g f(x)$ in its simplest form.
iii) Find the inverse function $f^{-1}(x)$.
9. i) Sketch a diagram to represen the information given below. Clearly show all measurements.
$\mathrm{P}, \mathrm{Q}$ and R are three buildings.
$Q$ is 155 m due west of $P$.
The bearing of R from Q is $190^{\circ}$.
RQ is 85 m .
ii) Calculate, to one decimal place, the distance RP.
iii) Calculate the sizes of the angles $Q R P$ and $Q P R$.
iv) Calculate, to the nearest degree, the bearing of $R$ from $P$.
10. A, B and C are matrices such that:

$$
A=\left(\begin{array}{ll}
3 & -4
\end{array}\right), B=\left(\begin{array}{cc}
2 & x \\
y & -7
\end{array}\right) \text { and } C=\left(\begin{array}{ll}
-10 & 1
\end{array}\right)
$$

Given that $A B=C$, calculate the values of $x$ and $y$.

