SOLUTIONS AND MARK SCHEME

1. A
2. A
3. C
4. B
5. C
6. B
7. C
8. B
9. D
10. D
11. B
12. A
13. B
14. C
15. C

Question	Working	Marks \& comments
16.(i)		[$\frac{1}{2}$ mark for each subset correctly enumerated.]
(ii)	$3 x+65=80$ $x=5$	1 [for summing his terms from 16(i) AND equating to 80] 1 [correct answer only] 2
(iii)	$n(s \cap(w \cup C))=11+8+15=34$	1 [for summing his terms from appropriate subsets]
17. (i)	$\begin{aligned} 10 x y-8 x- & 15 n y+12 n \\ & =2 x(5 y-4)-3 n(5 y-4) \\ & =(5 y-4)(2 x-3 n) \end{aligned}$	
(ii)	$\begin{aligned} & 5 x^{2}-125 \\ = & 5\left(x^{2}-25\right) \\ = & 5(x-5)(x+5) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \text { [correct answer only] } \quad 2 \end{aligned}$
(iii)	$2 x^{2}-9 x-5=(2 x+1)(x-5)$	22

18.(i)	$\begin{aligned} & 2 x^{2}-6 x+3=0 \\ & x=\frac{6 \pm \sqrt{6^{2}-4(2)(3)}}{2(2)} \\ & x=\frac{6 \pm \sqrt{12}}{4} \\ & x=0.63 \\ & x=2.37 \end{aligned}$	1 [use of quadratic formula] 1 [maximum of 2 marks for correct use of his expression] 1 [c.a.o] 1 [c.a.o]
(ii)	$\begin{aligned} & y=20-3 x \\ & y=2 x^{2} \\ & 2 x^{2}=20-3 x \\ & 2 x^{2}+3 x-20=0 \\ & (2 x-5)(x+4)=0 \\ & x=\frac{5}{2} \quad x=-4 \\ & y=\frac{25}{2} \quad y=32 \end{aligned}$	1 equating expressions 1 factorising 1 correct values of x 1 correct values of y

19(i))	$\begin{aligned} f g(2)=f\left(2^{2}+2+2\right) & =f(8) \\ & =2(8)+3=19 \end{aligned}$	1 2
(ii)(a)	$\begin{aligned} f g(x) & =2\left(x^{2}+x+2\right)+3 \\ & =2 x^{2}+2 x+7 \end{aligned}$	1 1 2
(ii)(b)	$f^{-1}(x)=\frac{x-3}{2}$	1 attempting to make " y " the subject. 1 c.a.o
(iii)	$\begin{aligned} & 2(2 x+3)+3=2 x+3 \\ & 4 x+9=2 x+3 \\ & 2 x=-6 \\ & x=-3 \end{aligned}$	1 substituting 1 simplifying 1 c.a.o 3

20(a)	Bearing of C from $\mathrm{B}=360-215=145^{\circ}$	1 [correct answer only] 2
(b)	$\begin{aligned} & A C^{2}=40^{2}+60^{2}-2 \times 40 \times 60 \times \cos 115 \\ & A C^{2}=38.64 \\ & A C=85.02 \end{aligned}$	1 [for use of cosine rule] 1 for use of correct lengths and angle 1 1 [correct evaluation of his expression]
(iii)	$\begin{aligned} & \frac{\sin A}{60}=\frac{\sin 115}{85.02} \\ & \sin A= \\ & \text { angle } A=39.76^{\circ} \end{aligned}$ Bearing of C from $A=80+39.76=119.8^{\circ}$	1 [use of either sine or cosine rule correctly] 1 1 [correct evaluation of his expression] 1
21.(i)	$\overline{O Q}=3 \boldsymbol{b}+3 \boldsymbol{a}$	1
	$\begin{aligned} \overline{O E} & =\frac{2}{3}(3 \boldsymbol{b}+3 \boldsymbol{a}) \\ & =2 \boldsymbol{a}+\mathbf{2} \boldsymbol{b} \end{aligned}$	1
	$\begin{aligned} \overline{D E} & =-\boldsymbol{a}+2 \boldsymbol{a}+2 \boldsymbol{b} \\ & =\boldsymbol{a}+2 \boldsymbol{b} \end{aligned}$	$1 \quad 1$
(ii)	$\begin{aligned} & \overline{E F}=\boldsymbol{a}+2 \boldsymbol{b} \\ & \overline{D E}=\overline{E F} \end{aligned}$ So DE and EF are parallel and since E is a common point D, E and F are collinear.	$\begin{array}{ll}1 & \\ 1 & 2\end{array}$

