SOLUTIONS AND MARK SCHEME

Question	Working	Marks \& comments
1.(a)		7 [1 mark for each area correctly enumerated in terms of " x ".]
(b)	$80-3 x=65$ $x=5$	1 [for summing his terms from 1(a) AND equating to 65] 1 [correct answer only]
2 (a)	$\begin{aligned} & k=\sqrt{3 w+a} \\ & k^{2}=3 w+a \\ & k^{2}-a=3 w \\ & w=\frac{k^{2}-a}{3} \end{aligned}$	1 [c.a.o] 1 [c.a.o] 1 [c.a.o] 3
(b) (i)	$\begin{aligned} 2 m-5 x-x m+10 & =2 m-x m-5 x+10 \\ & =m(2-x)+5(-x+2) \\ & =(2-x)(m+5) \end{aligned}$	$\begin{aligned} & 1+1 \\ & 1 \text { [correct answer only] } \quad 3 \end{aligned}$
(b) (ii)	$\begin{aligned} \frac{x^{2}-4}{2 x^{2}-x-6} & =\frac{(x+2)(x-2)}{(2 x+3)(x-2)} \\ & =\frac{(x+2)}{(2 x+3)} \end{aligned}$	1 [factorizing the numerator] 1 [factorizing the denominator] 1
3.	$\begin{array}{ll} x^{2}+y^{2}=17 ; & y=x-3 \\ & y^{2}=x^{2}-6 x+9 \\ x^{2}+x^{2}-6 x+9=17 & \\ 2 x^{2}-6 x-8=0 \\ (2 x+2)(x-4)=0 \\ \Rightarrow \quad x=-1 \quad x=4 \\ \quad y=-4 \quad y=1 \end{array}$ Answer: $(-1,-4)$ and $(4,1)$	1 [attempting squaring expression AND substituting] 1 [for correctly simplifying] 1 [for factorizing correctly] $1+1$ [c.a.o] $1+1$ [c.a.o]

4.(i)	$\begin{aligned} & f(x)=x^{2}-16 x+4 \\ & \quad f(x)=x^{2}-16 x+(-8)^{2}+4-(-8)^{2} \\ & \quad f(x)=(x-8)^{2}-60 \end{aligned}$	$1+1+1$
(ii)	$x=8 \quad y=-60$	$1+1$ [correct answers based on his expression in 4(i)]
(iii)	$\begin{gathered} x=\frac{16 \pm \sqrt{16^{2}-4(1)(4)}}{2(1)} \\ x=\frac{16 \pm 15.49}{2} \\ x=0.26 \\ x=15.75 \end{gathered}$	1 [correct use of quadratic formula] 1 [maximum of 2 marks for correct use of his expression from 4(i)] 1 [c.a.o] 1 [c.a.o]
5. (a) (b)	$\begin{aligned} & m_{l 1}=\frac{-2-1}{6-1}=\frac{-3}{5}=-0.6 \\ & m_{l 2}=\frac{5}{3} \\ & y=\frac{5}{3} x+c \quad \text { or } \quad\left(y-y_{1}\right)=\frac{5}{3}\left(x-x_{1}\right) \\ & 9=\frac{5}{3}(-1)+c \quad \text { or }(y-9)=\frac{5}{3}(x+1) \\ & c=\frac{32}{3} \end{aligned}$	$1+1$ 1 [gradient of I_{2} - correct use of his value from 5(a)] 1[setting up the equation of a straight line.] 1 [substituting coordinates correctly into one form of the equation of a straight line] 3

6.(a)	$\begin{aligned} & f(x)=\frac{5 x-2}{x} \\ & y=\frac{5 x-2^{2}}{x} \\ & x=\frac{5 y-2}{y} \\ & x y=5 y-2 \\ & x y-5 y=-2 \\ & y(x-5)=-2 \\ & y=f^{-1}(x)=\frac{-2}{x-5} \text { or } \frac{2}{5-x} \end{aligned}$	
(b)	$\begin{aligned} g f(2)=g\left[\frac{10-2}{2}\right] & =g(4)=16 \end{aligned}$	1 [attempting to find $f(2)$ first seen or implied] 1 [correct answer only]

7(i)	$\begin{aligned} & A C^{2}=6.5^{2}+2.5^{2}=48.6 \\ & A C=6.96 \end{aligned}$	1 [use of Pythagoras rule/cosine rule] 1 [correct answer only] 2
(ii)	$B C^{2}=5^{2}+6.96^{2}-2 \times 5 \times 6.96 \times \cos 60=$ $B C^{2}=38.64$ $B C=6.22$	1 [for use of cosine rule] 1 [for correct substitution of his value of AC AND the 60°] 1 [correct evaluation of his expression]
(iii)	$\frac{\sin A B C}{6.96}=\frac{\sin 60}{6.22}$ $\sin A B C=0.9691$ $\text { angle } A B C=75.7^{\circ}$	1 [use of either sine or cosine rule correctly] 1 [correct use of his lengths (i.e. AC and BC) and/or 60°] 1 [correct evaluation of his expression]
8. (i)	$\begin{aligned} 2 P-Q & =2\left[\begin{array}{cc} 5 & -1 \\ 3 & 8 \end{array}\right]-\left[\begin{array}{cc} 7 & 8 \\ -2 & 6 \end{array}\right] \\ & =\left[\begin{array}{cc} 10 & -2 \\ 6 & 4 \end{array}\right]-\left[\begin{array}{cc} 7 & 8 \\ -2 & 6 \end{array}\right]=\left[\begin{array}{cc} 3 & -10 \\ 8 & -2 \end{array}\right] \end{aligned}$	1 [for multiplying P by 2 correctly] 1 [correct answer only]
(ii)	$\mathrm{PQ}=\left[\begin{array}{cc}5 & -1 \\ 3 & 4\end{array}\right]\left[\begin{array}{cc}7 & 8 \\ -2 & 6\end{array}\right]=\left[\begin{array}{cc}37 & 34 \\ 13 & 48\end{array}\right]$	4 marks [1 for each correct element]
9.(i)	$\overline{S Q}=2 \boldsymbol{b}-4 \boldsymbol{a}$	1
(ii)	$\begin{aligned} \overline{Q R}=\overline{Q P}+\overline{P S} & +\overline{S R} \text { or } \overline{Q S}+\overline{S R} \\ & =-2 \boldsymbol{b}+4 \boldsymbol{a}+2 \boldsymbol{a}+\boldsymbol{b} \\ & =6 \boldsymbol{a}-\boldsymbol{b} \end{aligned}$	1 1 1 3
(iii)	$\begin{aligned} \overline{P T} & =h \overline{P R}=h(\overline{P S}+\overline{S R}) \\ & =h(4 \boldsymbol{a}+2 \boldsymbol{a}+\boldsymbol{b}) \\ & =h(6 \boldsymbol{a}+\boldsymbol{b}) \end{aligned}$	1 1 2
(iv)	$\begin{aligned} & \overline{S T}=\frac{1}{4} \overline{S Q}=\frac{1}{4}(2 \boldsymbol{b}-4 \boldsymbol{a})=\frac{1}{2} \boldsymbol{b}-\boldsymbol{a} \\ & \overline{S T}=\overline{P T}-4 \boldsymbol{a}=h(6 \boldsymbol{a}+\boldsymbol{b})-4 \boldsymbol{a}=(6 h-4) \boldsymbol{a}+h \boldsymbol{b} \\ & (6 h-4) \boldsymbol{a}+h \boldsymbol{b}=\frac{1}{2} \boldsymbol{b}-\boldsymbol{a} \\ & h=\frac{1}{2} \end{aligned}$	1 [use of his $\overline{S T}$] 1 1 [equating ST's or SQ's and attempting to solve for h] 1 [c.a.o]

