HARRISON COLLEGE PROMOTION EXAMINATIONS 2011: 4th Form

Question	Working	Marks & comments
1.(a)	H $9 - x$ $30 - 3x$ x $13 - x$ $3x$ $25 - 3x$ A	7 [1 mark for each area correctly enumerated in terms of "x".] 7
(b)	80 - 3x = 65	1 [for summing his terms from 1(a) AND equating to 65]
	<i>x</i> = 5	1 [correct answer only] 2
2 (a)	$k = \sqrt{3w + a}$	
	$k^2 = 3w + a$	1 [c.a.o]
	$k^2 - a = 3w$	1 [c.a.o]
	$w = \frac{k^2 - a}{3}$	1 [c.a.o] 3
(b) (i)	2m - 5x - xm + 10 = 2m - xm - 5x + 10	
	= m(2 - x) + 5(-x + 2) $= (2 - x)(m + 5)$	1 + 1 1[correct answer only] 3
(b) (ii)	$\frac{x^2 - 4}{2x^2 - x - 6} = \frac{(x+2)(x-2)}{(2x+3)(x-2)}$	1 [factorizing the numerator] 1 [factorizing the denominator]
	$=\frac{(x+2)}{(2x+3)}$	1 3
3.	$x^{2} + y^{2} = 17;$ $y = x - 3$ $y^{2} = x^{2} - 6x + 9$	1 [attempting squaring expression AND substituting]
	$x^2 + x^2 - 6x + 9 = 17$,
	$2x^2 - 6x - 8 = 0$	1 [for correctly simplifying]
	(2x+2)(x-4) = 0	1 [for factorizing correctly]
	$\Rightarrow x = -1 \qquad x = 4$ $y = -4 \qquad y = 1$	1 + 1 [c.a.o]
	y = -4 $y = 1Answer: (-1, -4) and (4, 1)$	1 + 1 [c.a.o] 7

SOLUTIONS AND MARK SCHEME

4.(i)	$f(x) = x^2 - 16x + 4$		
	$f(x) = x^{2} - 16x + (-8)^{2} + 4 - (-8)^{2}$ $f(x) = (x - 8)^{2} - 60$	1+1+1	3
(ii)	x = 8 y = -60	1 + 1 [correct answers based on his expression in 4(i)]	on 2
(iii)	$x = \frac{16 \pm \sqrt{16^2 - 4(1)(4)}}{2(1)}$	1 [correct use of quadratic formula]	
	$x = \frac{16 \pm 15.49}{2}$	1 [maximum of 2 marks for correct use of his expression fr 4(i)]	om
	x = 0.26 x = 15.75	1 [c.a.o]	
		1 [c.a.o]	4
5. (a)	$m_{l1} = \frac{-2-1}{6-1} = \frac{-3}{5} = -0.6$	1 + 1	2
	$m_{l2} = \frac{5}{3}$	 1 [gradient of l₂ - correct use of his value from 5(a)] 	
	$y = \frac{5}{3}x + c$ or $(y - y_1) = \frac{5}{3}(x - x_1)$	1[setting up the equation of a straight line.]	
	$9 = \frac{5}{3}(-1) + c \text{or} (y - 9) = \frac{5}{3}(x + 1)$ $c = \frac{32}{3}$	1 [substituting coordinates correctly into one form of the equation of a straight line]	3

6.(a)	$f(x) = \frac{5x - 2}{x}$ $y = \frac{5x - 2}{x}$	
	$x = \frac{5y-2}{y}$	1
	xy = 5y - 2	1
	xy - 5y = -2	1
	y(x-5) = -2	1
	$y = f^{-1}(x) = \frac{-2}{x-5}$ or $\frac{2}{5-x}$	1 [c.a.o] 5
(b)	$gf(2) = g\left[\frac{10-2}{2}\right]$	1 [attempting to find <i>f(2)</i> first seen or implied]
	= g(4) = 16	1 [correct answer only] 2

7(i)	$AC^2 = 6.5^2 + 2.5^2 = 48.6$	1 [use of Pythagoras rule/cosine rule]
	AC = 6.96	1 [correct answer only] 2
(ii)	$BC^2 = 5^2 + 6.96^2 - 2 \times 5 \times 6.96 \times \cos 60 =$	1 [for use of cosine rule]
	$BC^2 = 38.64$	1 [for correct substitution of his value of AC AND the 60°]
	BC = 6.22	1 [correct evaluation of his expression] 3
(iii)	$\frac{\sin ABC}{6.96} = \frac{\sin 60}{6.22}$	1 [use of either sine or cosine rule correctly]
	$\sin ABC = 0.9691$	1 [correct use of his lengths (i.e.AC and BC) and/or 60 ⁰]
	angle ABC = 75.7°	1 [correct evaluation of his expression] 3
8. (i)	$2P - Q = 2\begin{bmatrix} 5 & -1 \\ 3 & 8 \end{bmatrix} - \begin{bmatrix} 7 & 8 \\ -2 & 6 \end{bmatrix}$	1 [for multiplying P by 2 correctly]
	$= \begin{bmatrix} 10 & -2 \\ 6 & 4 \end{bmatrix} - \begin{bmatrix} 7 & 8 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 3 & -10 \\ 8 & -2 \end{bmatrix}$	1 [correct answer only] 2
(ii)	$PQ = \begin{bmatrix} 5 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & 8 \\ -2 & 6 \end{bmatrix} = \begin{bmatrix} 37 & 34 \\ 13 & 48 \end{bmatrix}$	4 marks [1 for each correct element] 4
9.(i)	$\overline{SQ} = 2\boldsymbol{b} - 4\boldsymbol{a}$	1 1
(ii)	$\overline{QR} = \overline{QP} + \overline{PS} + \overline{SR}$ or $\overline{QS} + \overline{SR}$	1
	$= -2\mathbf{b} + 4\mathbf{a} + 2\mathbf{a} + \mathbf{b}$	1
	= 6a - b	1 3
(iii)	$\overline{PT} = h \overline{PR} = h (\overline{PS} + \overline{SR})$	1
	$=h(4\boldsymbol{a}+2\boldsymbol{a}+\boldsymbol{b})$	1 2
	= h(6a + b)	
(iv)	$= h(6\boldsymbol{a} + \boldsymbol{b})$ $\overline{ST} = \frac{1}{4}\overline{SQ} = \frac{1}{4}(2\boldsymbol{b} - 4\boldsymbol{a}) = \frac{1}{2}\boldsymbol{b} - \boldsymbol{a}$	1 [use of his \overline{ST}]
	$\overline{ST} = \overline{PT} - 4\mathbf{a} = h(6\mathbf{a} + \mathbf{b}) - 4\mathbf{a} = (6h - 4)\mathbf{a} + h\mathbf{b}$	1
	$(6h-4)\boldsymbol{a}+h\boldsymbol{b}=\frac{1}{2}\boldsymbol{b}-\boldsymbol{a}$	1 [equating ST's or SQ's and attempting to solve for <i>h</i>]