SCHEME OF WORK CHECKLIST FROM SEPT 2016 - FORM 3: TERM I

TEXT: MATHEMATICS A COMPLETE COURSE WITH CXC QUESTIONS VOL. 1

1. ALGEBRA (III)

WEEK $1 \boldsymbol{\&} 2$ 12. Use symbols to represent Binary Operations (other than the four basic ones) \& perform simple computations with them. (p226-227)
13. Use the Laws of Indices to manipulate expressions with integral indices (include fractional / rational indices) (p258-264)
14. Formulae (change of subject, include roots \& powers). (Toolsie Vol.2, p744, Ex. 13c, Q76-134)

WEEK $3 \boldsymbol{\&} 4$ 15. Use Linear Inequalities to solve word problems (p240-244; p252-254)
16. Solve Simultaneous Linear Equations in two unknowns algebraically (p244-248)
17. Use simultaneous linear equations to solve word problems (p254-258)

WEEK 5 \& 6 18. Represent Direct \& Inverse Variations symbolically p296-300
19. Solve problems involving direct variation $\&$ inverse variation
2. CONSUMER ARITHMETIC (III) (P166-169; 175-193; 197-209)

WEEK 7-9 7. Calculate (for not more than 3 years)
Compound Interest
Appreciation
Depreciation
Amount
8. Solve problems involving measures \& money (including exchange rate)
9. Solve problems involving
(a) Rates \& Taxes (including Income Tax)
(b) Investments

3. MEASUREMENT (III) (p117-149)

WEEK 10-14 11. Calculate the length of an arc of a circle
12. Calculate the area of a sector of a circle

Use Hero's formula for the area of a triangle (Oxford Mathematics 4, p237, Q21)
13. Solve problems using: (Bk 1 Mathematics for Caribbean Schools, $2^{\text {nd }}$ Edn., p95-102; p47-56)
the properties of faces, edges \& vertices of solids,
(i) Cylinder
(ii) Sphere
(iii) Cone
14. Calculate the area of a segment of a circle
15. Calculate the surface area of solids
(a) Cylinder
(b) Sphere
(c) Cone
16. Calculate the volume of solids
(a) Cylinder
(b) Sphere
(c) Cone

SCHEME OF WORK CHECKLIST FROM SEPT 2016 - FORM 3 TERM II

4. STATISTICS (III) (p336-389)

WEEK 1-4 5. Differentiate between sample \& population attributes - sample statistics \& population parameters
6. Measurement scales - Nominal, Ordinal, Interval \& Ratio
7. Differentiate between types of data:

Discrete \& Continuous variables
Ungrouped \& Grouped data
8. Construct a Frequency Table for a given set of data:

Ungrouped
Grouped data
9. Determine class features for a given set of data:

Max / Min
Range
Extreme values \& their effect
Class interval
Class boundaries
Class limits
Class midpoint
Class width
10. Represent numerical \& statistical data by

Histogram
Frequency polygon
11. Interpret data presented in any of the graphical or pictorial forms named in objective 10 above
12. Determine measures of central tendency (mean, median \& mode) for

Raw
Ungrouped
Grouped data (no median)
13. Determine when it is most appropriate to use as the average for a set of data

Mean
Median
Mode
14. Determine the measures of dispersion /spread
(e.g. Range, Interquartile \& Semi-interquartile range), for
(i) Raw
(ii) Ungrouped data.
15. Analyze statistical data \& diagrams, commenting on the averages the Dispersion (Spread)
the Shape of the Frequency Distribution
effect of extreme values
16. Use standard deviation to compare sets of data. No calculation of the standard deviation is required.
17. Determine the Proportion or Percentage of the sample above or below a given value from Raw data or Table
18. Identify the Sample Space for a simple experiment, including the use of contingency tables
19. Determine Experimental \& Theoretical probabilities of simple events
20. Apply statistical methods to analyze data \& make appropriate inference(s) from:

```
Raw data
Tables
Diagrams
```


5. RELATIONS, FUNCTIONS \& GRAPHS (II) (p288-296; p304-313)

WEEK 5-7 2. Explain concepts associated with relations:
Types of relations
Examples \& Non-examples
Domain
Range
Image
Co-domain
3. Represent a relation in various ways:

Set of Ordered Pairs
Arrow diagrams
Graphically
Algebraically
4. State the characteristics that define a Function:

Many-to-one or One-to-one relation
Examples \& Non-examples
5. Use the functional notations, for example, $f: x \rightarrow x^{2}$; or $f(x)=x^{2}$; as well as $y=f(x)$ for given domains (p294-296)
6. Distinguish between a Relation \& a Function:

Ordered pairs
Arrow diagrams
Graphically (vertical Line Test)

WEEK $8 \boldsymbol{\&} 9$ 7. Draw \& Interpret graphs of Linear Functions: (p280-282, p300-304)

```
y=c;
x = k;
y=mx+c. where m,c&k are real numbers.
```

8. Determine the Intercepts of the graph of linear functions:
x - \& y - intercepts;
Graphically
Algebraically
9. Determine the Gradient of a straight line: slope - the ratio of the vertical rise to the horizontal shift (p304-310)

WEEK 10-12 10. Determine the Equation of a line using:
(a) the graph of the line
(b) the co-ordinates of two points on the line
(c) the gradient \& one point on the line
(d) the gradient of the line \& its relationship to another line.
11. Solve problems involving the Gradient of Parallel \& Perpendicular lines (p915-929)
12. Determine from the co-ordinates on a line segment:
(a) the length
(b) the co-ordinates of the mid-point
13. Solve graphically a system of two linear equations in two variables (p313-319) \qquad

SCHEME OF WORK CHECKLIST FROM SEPT 2015 - FORM 3 TERM III

6. GEOMETRY \& TRIGONOMETRY (I)

WEEK 1-4 1. Determine the (p540-571)
(i) Sine
(ii) Cosine
(iii) Tangent ratios of acute angles in a right-angled triangle
2. Use the
(i) Sine
(ii) Cosine
(iii) Tangent ratios in the solution of right-angled triangles
3. Use simple trigonometrical ratios to solve problems based on measures in the physical world
(a) Heights \& Distances
(b) Angles of Elevation \& Depression
4. Represent the relative position of two points given the Bearing of one point with respect to the other (include Cardinal points)
5. Determine the Bearing of one point relative to another point given the position of the points
6. Solve problems involving Bearings

WEEK 5 - REVISION EXERCISES, TESTS \& PAST PAPERS

