SECOND FORMS
2003

140 COPIES

1½ HOURS

Answer ALL questions. All necessary working MUST be shown. Tables are provided.

1. a) If $U=\{f, a, c, t, o, r, i, s, e\}, P=\{r, a, t, i, o\}$ and $Q=\{s, e, t\}$ draw a Venn diagram representing the information.
b) Using the information for U, P, Q find the following

$$
\begin{aligned}
\text { i. } & (P \cup Q)^{\prime} \\
\text { ii. } & P \cap Q \\
\text { iii. } & (P \cup Q)^{\prime} \cap(P \cap Q) \\
\text { iv. } & n(P \cup Q)
\end{aligned}
$$

2. Solve the following equations
a) $5(3 m+4)=3(4 m+7)$
b) $\frac{23-3 x}{x+1}=\frac{4}{3}$
c) $\frac{3}{4} x-1 \frac{2}{3}=\frac{2}{3} x$
3. Simplify the following
a) $5(2 y-x)+6 x$
b) $\frac{9 a-5}{5}-\frac{3 a-2}{2}$
c) $a^{-8} \div a^{4}$
4. If Zena is x years old and Joseph is 11 years older than Zena, write Joseph's age as an expression in terms of x. Hence solve for x if in 5 years time Joseph will be twice as old as Zena. Then state the ages of Zena and Joseph.
5. A ladder leans against a wall. The ladder reaches 5 m up the wall and its foot is 2 m from the wall. If the foot of the ladder is placed 1 m further from the wall, calculate how far the ladder then reaches. Give your answer to 3 significant figures.
6. Solve the following
a) $4 x+4>7$
b) $2 x-2 \geq \frac{x+2}{2}$
c) An isosceles triangle has sides of length $y \mathrm{~cm}, y \mathrm{~cm}$ and 9 cm . Its perimeter is less than 24 cm and y is a whole number.
i. Find the lowest value of y
ii. Find the highest value of y
7. Solve the following
a) $0.05181 \div 3.14$
b) $3.4 \times 10^{-3}+6.2 \times 10^{-3}$

Expressing each answer
i. Correct to three significant figures
ii. Correct to two decimal places
iii. In standard form
8. $\triangle \mathrm{ABC}$ is right-angled at B and $\mathrm{BC}=5 \mathrm{~cm}$

a) If the area of $\triangle A B C$ is $30 \mathrm{~cm}^{2}$, find the length of $A B$.
b) Hence find the length of AC .
9. The transformation, \mathbf{M}, denotes a reflection in the line $x=2$. On graph paper, using a scale of 2 cm to 1 unit on both the x and y axes plot the point $\mathrm{A}(4,2)$ and $B(3,1)$. Join $A B$. Then draw $A^{\prime} B^{\prime}$ which is the image $A B$ under the transformation M

