UNIT 1 - TEST 2, PREVIEW 2017

Time: $\mathbf{1}$ Hour \& 20 minutes

(Please note that changes have been made to questions 4 and 6)

1. Solve, for $0 \leq \theta \leq 2 \pi$, the equation $6 \sin ^{2} \theta-\cos \theta=4$

Total 7 marks

2. Prove that $\tan A \equiv \frac{1-\cos 2 A+\sin 2 A}{1+\cos 2 A+\sin 2 A}$.

Total 5 marks

3. Given that $\sin A=\frac{12}{13}$ and $\sin B=\frac{4}{5}$, where A and B are both acute angles, find the exact value of $\sin (A-B)$.

Total 6 marks
4. Express $\sin x+\sqrt{3} \cos x$ in the form $R \sin (x+\alpha)$, where $R>0$ and $0^{\circ} \leq \alpha \leq 90^{\circ}$, giving the exact value of R and the values of α correct to 1 decimal place.

Hence solve the equation $\operatorname{inx}+\sqrt{3} \cos x+1=0$ for $0^{\circ} \leq x \leq 360^{\circ}$.
Total 6 marks
5. i) The centre of a circle is $(-2,3)$ and a point on the circumference is $(-5,-1)$. Find the equation of the circle.
ii) Determine the equation of the tangent to the circle at the point $(-5,-1)$.
iii) Find the points of intersection of the circle in part i) with the circle with equation
$x^{2}+y^{2}+6 x-7 y-10=0$
6. i) Determine the vector equation of the line joining the points $(2,3,-2)$ and $(0,7,-1)$.
ii) Find the point of intersection of the straight line with equation $\boldsymbol{r}=\left(\begin{array}{c}-6 \\ -3 \\ 1\end{array}\right)+\mu\left(\begin{array}{c}5 \\ 1 \\ -2\end{array}\right)$ intersects the line from part i).
iii) Determine the angle between the two lines.

Total 11 marks
7. With respect to an origin O, the points A and B have position vectors $\boldsymbol{a}=-4 \boldsymbol{i}+4 \boldsymbol{j}-\boldsymbol{k}$ and $\boldsymbol{b}=5 \boldsymbol{i}-2 \boldsymbol{j}+11 \boldsymbol{k}$ respectively.
i) Find the distance between the points A and B.
ii) Find the equation of the plane π passing through the point $2 \boldsymbol{i}+\boldsymbol{j}-4 \boldsymbol{k}$ and perpendicular to $-\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}$.
iii) Find the angle between the line $A B$ and the plane π.

Total 11 marks

Answers

1. $2.30,3.98, \frac{\pi}{3}, \frac{5 \pi}{3}$
2. Proof
3. $\frac{16}{65}$
4. $2 \sin \left(x+60^{\circ}\right), 150^{0}, 270^{0}$
5. i) $(x+2)^{2}+(y-3)^{2}=25$
ii) $y=-\frac{3}{4} x-\frac{19}{4}$ or $4 y=-3 x-19 \quad$ iii) $(2,6)(-2,-2)$
6. i) $\left(\begin{array}{c}2 \\ 3 \\ -2\end{array}\right)+\lambda\left(\begin{array}{c}2 \\ -4 \\ -1\end{array}\right)$
ii) $(4,-1,-3)$
iii) 71.4^{0}
7. i) $\sqrt{261}$ or 16.2 units
ii) $r \cdot\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)=-7$
iii) 13.1^{0}
