HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2016 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 1 TEST 2 (PREVIEW) 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

(i) Write your name clearly on each sheet of paper use.
(ii) Answer ALL questions.
(iii) Number your questions identically as they appear on the question paper and do NOT write your solutions to different questions beside each other.
(iv) Unless otherwise stated in the question, any numerical answer that is not exact, MUST be written correct to three (3) significant figures

EXAMINATION MATERIALS ALLOWED

a) Mathematical formulae.
b) Scientific calculator (non-programmable, non-graphical)

1. (a) Determine the equation of the curve which is the locus of the points $\sqrt{3}$ units from the point $(-3,2)$.
(b) Find the length of the tangent drawn from the point $A(3,-4)$ to the circle $x^{2}+y^{2}+6 x-8 y=0$
2. (a) Prove that $\cos ^{4} \theta-\sin ^{4} \theta+1=2 \cos ^{2} \theta$.
(b) Determine the solutions of the equation $2 \tan ^{2} x=\sec x+1$ for $0 \leq \theta \leq 2 \pi$.
(c) (i) Given that $\cos A=\frac{3}{5}$ determine the values of

$$
\begin{equation*}
\text { (a) } \sin 2 A \tag{2}
\end{equation*}
$$

(b) $\cos 2 A$
(c) $\cos 3 A$

$$
[3]
$$

Using your answer for (c) (i) (a) and (b) determine which quadrant $2 A$ is in giving a reason for your answer.
(d) (i) Express $f(\theta)=8 \sin \theta+15 \cos \theta$ in the form $R \sin (\theta+\alpha)$ where $R>0$ and $0<\alpha<\pi$.
(ii) Is 16 a possible value for $f(\theta)$. Give a reason for your answer.
(iii) Solve the equation $f(\theta)=2$ for $0 \leq \theta \leq 2 \pi$.
3. The points A, B, C and D have position vectors $3 i+2 k, 2 i-2 j+5 k, 2 j+7 k$ and $-2 i+10 j+7 k$ respectively.
(i) Calculate the angle between $O A$ and $O D$.
(ii) Show that $B A$ and $B C$ are perpendicular.
(iii) Hence, determine the equation of the plane containing the points A and B.
4. (a) A curve is represented parametrically by

$$
x=\frac{2}{\sqrt{t}}, \quad y=\frac{3}{1+t}
$$

Determine the equation of the curve in Cartesian form.
(b) A curve C has parametric equations

$$
x=3 \tan t, y=4 \sec t \quad \text { where } 0 \leq t \leq \pi
$$

Determine the equation of the curve in Cartesian form.

1. (a) $(x+3)^{2}+(y-2)^{2}=3$ (b) $5 \sqrt{3} \quad$ 2. (b) $0.84,5.44, \pi \quad$ (c) (i) (a) $\frac{24}{25} \quad$ (b) $-\frac{7}{25}$ (c) $-\frac{117}{125}$ (ii) Quadrant II (d) (i) $17 \sin (\theta+1.08) \quad$ (ii) Yes, max value is 17 (iii) $1.94,5.32$ 3. (i) 79.7° (iii) r. $\left(\begin{array}{c}-2 \\ 4 \\ 2\end{array}\right)=-2$ 4. (a) $y=\frac{3 x^{2}}{x^{2}+4}$ (b) $\frac{y^{2}}{16}-\frac{x^{2}}{9}=1$
