HARRISON COLLEGE INTERNAL EXAMINATION MARCH 2016 CARIBBEAN ADVANCED PROFICIENCY EXAMINATION SCHOOL BASED ASSESSMENT PURE MATHEMATICS UNIT 1 TEST 2 (PREVIEW) 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- (i) Write your name clearly on each sheet of paper use.
- (ii) Answer ALL questions.
- (iii) Number your questions identically as they appear on the question paper and do **NOT write your solutions to different questions** beside each other.
- (iv) Unless otherwise stated in the question, any numerical answer that is not <u>exact</u>, **MUST** be written correct to <u>three</u> (3) significant figures

EXAMINATION MATERIALS ALLOWED

- a) Mathematical formulae.
- b) Scientific calculator (non-programmable, non-graphical)

1	(a) Determine the equation of the curve which is the locus of the points $\sqrt{3}$ units from the point			
1.	(a) Determine the equation of the curve which is the locus of the points $\sqrt{3}$ units from the point $(-3, 2)$.			[2]
	(b) Find the length of the tangent drawn from the point $A(3, -4)$ to the circle $x^2 + y^2 + 6x - 8y$			
2.	(a) Prove that $\cos^4 \theta - \sin^4 \theta + 1 = 2\cos^2 \theta$.			[4]
	(b) Determine the solutions of the equation $2 \tan^2 x = \sec x + 1$ for $0 \le \theta \le 2\pi$.			[7]
	(c)	(i)	Given that $\cos A = \frac{3}{5}$ determine the values of	
			(a) $\sin 2A$	[2]
			(b) cos 2 <i>A</i>	[2]
			(c) cos 3 <i>A</i>	[3]
		(ii)	Using your answer for (c) (i) (a) and (b) determine which quadrant 2A is	in giving a
			reason for your answer.	[2]
	(d)	(i)	Express $f(\theta) = 8 \sin \theta + 15 \cos \theta$ in the form $R \sin(\theta + \alpha)$ where $R > 0$ and	nd
			$0 < \alpha < \pi$.	[3]
		(ii)	Is 16 a possible value for $f(\theta)$. Give a reason for your answer.	[2]
		(iii)	Solve the equation $f(\theta) = 2$ for $0 \le \theta \le 2\pi$.	[5]
3. The points A, B, C and D have position vectors $3i + 2k$, $2i - 2k$			B, C and D have position vectors $3i + 2k$, $2i - 2j + 5k$, $2j + 7k$ and $-2i + 10j$	j + 7k
	respectively.			
	(i)	(i) Calculate the angle between <i>OA</i> and <i>OD</i> .		
(ii) Show that <i>BA</i> and <i>B</i>			that <i>BA</i> and <i>BC</i> are perpendicular.	[4]
	(iii)	(iii) Hence, determine the equation of the plane containing the points <i>A</i> and <i>B</i> .		
4.	(a)	A curv	ve is represented parametrically by	
			$x = \frac{2}{\sqrt{t}}, \qquad y = \frac{3}{1+t}$	
		Deter	mine the equation of the curve in Cartesian form.	[4]
			[1]	

A curve C has parametric equations

(b)

$$3 \tan t$$
, $y = 4 \sec t$ where $0 \le t \le \pi$

Determine the equation of the curve in Cartesian form.

x =

[4]

1. (a) $(x + 3)^2 + (y - 2)^2 = 3$ (b) $5\sqrt{3}$ 2. (b) $0.84, 5.44, \pi$ (c) (i) (a) $\frac{24}{25}$ (b) $-\frac{7}{25}$ (c) $-\frac{117}{125}$ (ii) Quadrant II (d) (i) $17\sin(\theta + 1.08)$ (ii) Yes, max value is 17 (iii) 1.94, 5.32 3. (i) 79.7° (iii) $r.\begin{pmatrix} -2\\4\\2 \end{pmatrix} = -2$ 4. (a) $y = \frac{3x^2}{x^2 + 4}$ (b) $\frac{y^2}{16} - \frac{x^2}{9} = 1$