LIST OF FORMULAE

Roots of quadratic equations	If $\quad a x^{2}+b x+c=0$
	then $x=\underline{-b \pm \sqrt{b^{2}-4 a c}}$
	then $x=\frac{2 a}{2 a}$

Trigonometric ratios

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite side }}{\text { hypotenuse }}
\end{aligned}
$$

Sine rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Cosine rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

Area of triangle
Area of $\triangle A B C=\frac{1}{2} a b \sin C$

SECTION A

Write the letter that matches your response to each question.

1. Solve $\frac{x-1}{3}+2=\frac{x+5}{4}$
A: 8
B: 3
C: -5
D: -30
2. Which of the following correctly expresses t as the subject of the formula

$$
\frac{p}{2}=\sqrt{\frac{t+r}{g}} \quad ?
$$

A: $\quad t=\frac{(g p)^{2}}{2}-r$
B: $\quad t=\left(\frac{g p}{2}-r\right)^{2}$
$\mathrm{C}: \quad t=\frac{(g p)^{2}}{4}-r$
D: $t=\frac{g p^{2}}{4}-r$
3. Make t the subject of the formula

$$
c t+y s=f t+g s
$$

A: $t=\frac{g s-y s}{f-c}$
B: $\quad t=\frac{f t+g s-y s}{c}$
$\mathrm{C}: t=\frac{g s-y s}{c-f}$
$\mathrm{D}: \quad t=\frac{f t+g s}{c y s}$
4.

The shaded area in the Venn diagram above represents
A: $(P \cup Q)^{\prime}$
B: $(Q \cup R)^{/}$
C: $(P \cap Q)^{\prime} \cup R$
D: $(P \cup R)^{\prime} \cap Q$
5. $5(2 x-y)-2(3 y-5 x)=$
A: $-11 y$
B: $2 x-6 y$
C: $5 x-7 y$
D: $20 x-11 y$
6. If $x^{2}+y^{2}-x y$ is equivalent to
A: $(x-y)^{2}-x y$
B: $(x+y)^{2}-x y$
C: $(x-y)^{2}+x y$
D: $(x+y)^{2}+2 x y$
7. The number that must be added to $x^{2}+6 x+8$ to make it a perfect square is
A: 1
B: 2
C: 6
D: 8
8. If $f: x \rightarrow 3 x^{2}-2 x+1$, then $f(-2)=$?
A: -7
B: 9
C: 14
D: 17

9: The graph below shows part of a parabola with the equation of the form $y=(x+a)^{2}+b$

The equation of the axis of symmetry of the parabola is $x=5$.
P is the point $(2,0)$. State the coordinates of Q .
A: $(7,0)$
B: $(0,7)$
C: $(8,0)$
D: $(10,0)$
10. Under reflection in the line $x=6$, the point $Y(3,2)$ is mapped on to a point Y^{\prime}.

What are the coordinates of Y^{\prime} ?
A: $(-3,-2)$
B: $(3,-2)$
$\mathrm{C}:(9,2) \quad \mathrm{D}:(9,-2)$
11. When rotated through 90° about the origin in an anti-clockwise direction, the image of the point $(1,2)$ is
A: $(2,1)$
B: $(2,-1)$
$\mathrm{C}:(-1,-2)$
D: $(-2,1)$
12. The position vectors of the points P and Q are $\binom{5}{-3}$ and $\binom{11}{5}$ respectively.
The length of the vector $\overrightarrow{P Q}$ is
A: 10
B: 6.32
C: 16.2
D: 6.24
13. The acute angle that vector $\mathbf{u}=\binom{8}{6}$ makes with the x-axis is
A: $\tan ^{-1} \frac{4}{3}$
B: $\tan ^{-1}$
$\mathrm{C}: \cos ^{-1} \frac{3}{4} \quad \mathrm{D}$
D: $\cos ^{-1} \frac{4}{3}$
14. Given that $\boldsymbol{p}=\binom{4}{-3}$ and $\boldsymbol{q}=\binom{x}{12}$, the value of x for which \mathbf{p} is parallel to \mathbf{q} is
A: 8
B: 16
C: -16
D: -8

15: If the matrix $\mathrm{A}=\left(\begin{array}{cc}2 & -3 \\ 6 & x\end{array}\right)$ is singular then x is
A: 4.5
B: 9
C: -4.5
D: -9

SECTION B

16. In a class, the students all study at least one language from French, Spanish and Portuguese.

No student studies all three languages.
All of the students who study Portuguese study French.
4 students study both French and Portuguese.
12 students study Spanish but not French.
9 students study French but not Spanish.
A total of 16 students study French.
(i) Draw a Venn diagram to show all of the above information.
(ii) Find the total number of students in this class.
17. Factorise completely
(i) $6 m+4 n-9 k m-6 k n$
(ii) $2 x^{2}-18$
(ii) $2 x^{2}-9 x-5$
18. (i) Express $2 x^{2}-4 x+1$ in the form $a(x+h)^{2}+k$ and hence state the coordinates of the minimum point, A , on the curve $=2 x^{2}-4 x+1$.
(ii) Solve the simultaneous equations

$$
\begin{align*}
& x-y+4=0 \\
& y=2 x^{2}-4 x+1 \tag{4}
\end{align*}
$$

19. The functions f and g are such that
$f(x)=6 x+1$ and $g(x)=\frac{4}{x}-3$
(i) Evaluate $f g(2)$.
(ii) Write expressions in x for
(a) $g^{-1} x$
(b) $f f(x)$
20. A plane leaves A and travels on a bearing of 044° to B 53 km away. It then departs to C which is 97 km away on a bearing of 152° from B.
(a) Draw a well labelled diagram to represent this information.
(b) Calculate to the nearest km the distance from C to A .
(c) Determine the bearing of A from C .
21.

In the diagram, $\overrightarrow{O U}=\mathbf{u}$ and $\overrightarrow{O V}=\mathbf{v}$.
K is on UV so that $\overrightarrow{U K}=\frac{2}{3} \overrightarrow{U V}$ and L is on OU so that $\overrightarrow{O L}=\frac{3}{4} \overrightarrow{O U}$.
M is the midpoint of KL.
Find the following in terms of \mathbf{u} and \mathbf{v}, giving your answers in their simplest form.
(i) $\overrightarrow{L K}$ [4
(ii) $\overrightarrow{O M}$
22. Given that $A=\left(\begin{array}{rr}4 & -1 \\ 4 & 3\end{array}\right)$ and $B=\left(\begin{array}{rr}1 & 0 \\ -3 & 4\end{array}\right)$

Find
(a) $2 A-B$
(b) $A B$
(c) A^{-1}
23. Answer this question on the sheet provided.
(a) Describe fully the single transformation which maps shape P onto shape Q.
(b) On the grid provided
(i) reflect shape P in the y axis and label the image X,
(ii) translate shape P by $\binom{-6}{-4}$ and label the image Y,
(iii) enlarge shape P by scale factor 2, with centre $(0,0)$ and label the image Z.

