

SECTION A

Write the letter that matches your response to each question.

1. Solve
$$\frac{x-1}{3} + 2 = \frac{x+5}{4}$$

A: 8 B: 3 C: -5 D: -30

2. Which of the following correctly expresses t as the subject of the formula

$$\frac{p}{2} = \sqrt{\frac{t+r}{g}} \quad ?$$
A: $t = \frac{(gp)^2}{2} - r$
B: $t = (\frac{gp}{2} - r)^2$
C: $t = \frac{(gp)^2}{4} - r$
D: $t = \frac{gp^2}{4} - r$

3. Make *t* the subject of the formula

$$ct + ys = ft + gs.$$
A: $t = \frac{gs - ys}{f - c}$
B: $t = \frac{ft + gs - ys}{c}$
C: $t = \frac{gs - ys}{c - f}$
D: $t = \frac{ft + gs}{cys}$

4.

The shaded area in the Venn diagram above represents

A:
$$(P \cup Q)^{/}$$

B: $(Q \cup R)^{/}$
C: $(P \cap Q)^{/} \cup R$
D: $(P \cup R)^{/} \cap Q$

5. 5(2x - y) - 2(3y - 5x) =

A:
$$-11y$$
 B: $2x - 6y$
C: $5x - 7y$ D: $20x - 11y$

6. If $x^2 + y^2 - xy$ is equivalent to

A: $(x - y)^2 - xy$	B: $(x + y)^2 - xy$
C: $(x - y)^2 + xy$	D: $(x + y)^2 + 2xy$

7. The number that must be added to $x^2 + 6x + 8$ to make it a perfect square is

8. If
$$f: x \to 3x^2 - 2x + 1$$
, then $f(-2) = ?$
A: -7 B: 9 C: 14 D: 17

9: The graph below shows part of a parabola with the equation of the form $y = (x + a)^2 + b$

The equation of the axis of symmetry of the parabola is x = 5.

P is the point (2, 0). State the coordinates of Q.

A:
$$(7, 0)$$
 B: $(0, 7)$ C: $(8, 0)$ D: $(10, 0)$

10. Under reflection in the line x = 6, the point Y(3,2) is mapped on to a point Y'.

What are the coordinates of Y'?

A:
$$(-3, -2)$$
 B: $(3, -2)$ C: $(9, 2)$ D: $(9, -2)$

11. When rotated through 90° about the origin in an anti-clockwise direction, the image of the point (1, 2)is

A:
$$(2, 1)$$
 B: $(2, -1)$ C: $(-1, -2)$ D: $(-2, 1)$

12. The position vectors of the points P and Q are $\binom{5}{-3}$ and $\binom{11}{5}$ respectively. The length of the vector \overrightarrow{PQ} is

13. The acute angle that vector $\mathbf{u} = \begin{pmatrix} 8 \\ 6 \end{pmatrix}$ makes with the *x*-axis is

A:
$$\tan^{-1}\frac{4}{3}$$
 B: $\tan^{-1}\frac{3}{4}$ C: $\cos^{-1}\frac{3}{4}$ D: $\cos^{-1}\frac{4}{3}$

14. Given that $\boldsymbol{p} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ and $\boldsymbol{q} = \begin{pmatrix} x \\ 12 \end{pmatrix}$, the value of x for which **p** is parallel to **q** is

15: If the matrix $A = \begin{pmatrix} 2 & -3 \\ 6 & x \end{pmatrix}$ is singular then x is B: 9 C: -4.5 D: -9 A: 4.5

SECTION B

- 16. In a class, the students all study at least one language from French, Spanish and Portuguese.No student studies all three languages.
 - All of the students who study Portuguese study French.
 - 4 students study both French and Portuguese.
 - 12 students study Spanish but not French.
 - 9 students study French but not Spanish.
 - A total of 16 students study French.

(i)	Draw a Venn diagram to show all of the above information.	[4]
(ii)	Find the total number of students in this class.	[1]

17. Factorise completely

(i) $6m + 4n - 9km - 6kn$	[2]
---------------------------	-----

(ii)
$$2x^2 - 18$$
 [2]

(ii)
$$2x^2 - 9x - 5$$
 [2]

18. (i) Express $2x^2 - 4x + 1$ in the form $a(x + h)^2 + k$ and hence state the coordinates of the minimum point, A, on the curve $= 2x^2 - 4x + 1$. [4]

(ii) Solve the simultaneous equations

$$x - y + 4 = 0$$

$$y = 2x^{2} - 4x + 1$$
[4]

19. The functions f and g are such that

$$f(x) = 6x + 1$$
 and $g(x) = \frac{4}{x} - 3$

- (i) Evaluate fg(2). [2]
- (ii) Write expressions in x for
 - (a) $g^{-1}x$ [2]
 - (b) ff(x) [2]

20. A plane leaves A and travels on a bearing of 044° to B 53 km away. It then departs to C which is 97 km away on a bearing of 152° from B.

(a)	Draw a well labelled diagram to represent this information.	[4]
(b)	Calculate to the nearest km the distance from C to A.	[4]

(c) Determine the bearing of A from C. [4]

21.

In the diagram, $\overrightarrow{OU} = \mathbf{u}$ and $\overrightarrow{OV} = \mathbf{v}$.

K is on UV so that
$$\overrightarrow{UK} = \frac{2}{3}\overrightarrow{UV}$$
 and L is on OU so that $\overrightarrow{OL} = \frac{3}{4}\overrightarrow{OU}$.

M is the midpoint of KL.

Find the following in terms of \mathbf{u} and \mathbf{v} , giving your answers in their simplest form.

(i)
$$\overrightarrow{LK}$$
 [4]

(ii)
$$\overrightarrow{OM}$$
 [4]

22. Given that
$$A = \begin{pmatrix} 4 & -1 \\ 4 & 3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 \\ -3 & 4 \end{pmatrix}$

Find

(a)
$$2A - B$$
 [2]

(c)
$$A^{-1}$$
 [2]

23. Answer this question on the sheet provided.

(a) Describe fully the single transformation which maps shape P onto shape Q .	[3]
(b) On the grid provided	
(i) reflect shape P in the y axis and label the image X ,	[2]
(ii) translate shape P by $\begin{pmatrix} -6 \\ -4 \end{pmatrix}$ and label the image Y,	[2]

enlarge shape P by scale factor 2, with centre (0, 0) and label the image Z. [2] (iii)